Skip to main content
Log in

Calculation of radiative transition probabilities and radiative recombination rate coefficients for H2, OH, H +2 and OH+ molecules

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A method is presented to calculate the radiative transition probabilities and the radiative recombination rate coefficients between electronic molecular states. Total transition probabilities are determined from vibrational transition probabilities without considering the detailed rotational structure of the molecular electronic states. Radiative recombination rate coefficients are obtained from the computation of vibrational photo-ionisation cross sections. Concerning spontaneous emission, Lyman (B → X) and Werner (C → X) band systems of H2 and Meinel (A → X), (B → A) and (B → X) band systems of OH are investigated. For radiative recombination, transitions between H +2 (X) and H2(X), and between OH+(X, a, A, b, and c) and OH(X) are considered. Transition probabilities and recombination rate coefficients are calculated as a function of temperature in the range 1500–15 000 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Yargeau, G. Soucy, M.I. Boulos, Plasma Chem. Plasma Process. 19, 327 (1999)

    Article  Google Scholar 

  2. M. Violier, N. Cerqueira, C. Vandensteendan, J.M. Baronnet, “New advanced oxidation process for organic pollutants degradation: underwater thermal plasma”, Proceedings of the XVth International Conference on Gas Discharge and their Applications (GD15) (Toulouse, France, 2004), Vol. 1, p. 745

    Google Scholar 

  3. M. Violier, N. Cerqueira, C. Vandensteendan, J.M. Baronnet, “Underwater oxidation of organic compounds using thermal plasma”, Proceedings of the 16th International Symposium on Plasma Chemistry (ISPC16) (Taormina, Italy, 2003)

    Google Scholar 

  4. N.V. Alekseev, A.V. Samokhin, A.N. Belivtsev, V.I. Zhavoronkova, High Energy Chemistry 34, 389 (2000); N.V. Alekseev, A.V. Samokhin, A.N. Belivtsev, V.I. Zhavoronkova, translated from Khimiya Vysokikh Energii 34, 446 (2000)

    Article  Google Scholar 

  5. M.A. Malik, A. Ghaffar, S.A. Malik, Plasma Source Sci. Technol. 10, 82 (2001)

    Article  ADS  Google Scholar 

  6. R. Knopp, F.J. Scherbaum, J.I. Kim, Fresenius J. Anal. Chem. 355, 16 (1996)

    Google Scholar 

  7. D.A. Cremers, L.J. Radziemski, T.R. Loree, Appl. Spectrosc. 38, 721 (1984)

    Article  ADS  Google Scholar 

  8. C. D’Angelo, J. Gomba, D. Iriarte, G. Bertucelli, Proceedings SPIE 3572, 534 (1999)

    Article  ADS  Google Scholar 

  9. G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, E. Tognini, Appl. Spectrosc. 51, 1102 (1997)

    Article  ADS  Google Scholar 

  10. G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, E. Tognini, Proccedings of the International Goescience And Remote Sensing Symposium (IGARSS 96) (1996), Vol. 2, p. 854

    Article  Google Scholar 

  11. G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, E. Tognini, Proccedings of the International Goescience And Remote Sensing Symposium (IGARSS 96) (1996), Vol. 1, p. 520

    Article  Google Scholar 

  12. C.J. Lorenzen, C. Carlhoff, U. Hahn, M. Jogwich, J. Anal. At. Spectrom. 7, 1029 (1992)

    Article  Google Scholar 

  13. P. Fichet, A. Toussaint, J.F. Wagner, Appl. Phys. A 69 S591 (1999)

    Article  ADS  Google Scholar 

  14. B. Charfi, M.A. Harith, Spectrochimica Acta B 57, 1141 (2002)

    Article  ADS  Google Scholar 

  15. R. Riahi, Ph. Teulet, Z. Ben Lakhdar, A. Gleizes, Eur. Phys. J. D 40, 223 (2006)

    Article  ADS  Google Scholar 

  16. G. Colonna, A. Casavola, M. Capitelli, Spectrochimica Acta B 56, 567 (2001)

    Article  ADS  Google Scholar 

  17. G. Colonna, L.D. Pietanza, M. Capitelli, Spectrochimica Acta B 56, 587 (2001)

    Article  ADS  Google Scholar 

  18. S.V. O’Neil, W.P. Reinhardt, J. Chem. Phys. 69, 2126 (1978)

    Article  ADS  Google Scholar 

  19. J.E. Pollard, D.J. Trevor, J.E. Reutt, Y.T. Lee, D.A. Shirley, J. Chem. Phys. 77, 34 (1982)

    Article  ADS  Google Scholar 

  20. G.R. Cook, P.H. Metzger, J. Opt. Soc. Am. 54, 968 (1964)

    Article  ADS  Google Scholar 

  21. J.A.R. Samson, R.B. Cairns, J. Opt. Soc. Am. 55, 1035 (1965)

    Google Scholar 

  22. Y. Itikawa, Chem. Phys. 30, 109 (1978)

    Article  ADS  Google Scholar 

  23. A.L. Ford, K.K. Docken, A. Dalgarno, Astrophys. J. 195, 819 (1975)

    Article  ADS  Google Scholar 

  24. Y.M. Chung, E.M. Lee, T. Masuoka, J.A.R. Samson, J. Chem. Phys. 99, 885 (1993)

    Article  ADS  Google Scholar 

  25. F. Martin, J. Phys. B: At. Mol. Opt. Phys. 32, R197 (1999)

    Article  ADS  Google Scholar 

  26. C.J. Latimer, K.F. Dunn, F.P. O’Neil, M.A. MacDonald, N. Kouchi, J. Chem. Phys. 102, 722 (1995)

    Article  ADS  Google Scholar 

  27. I. Sanchez, F. Martin, J. Chem. Phys. 107, 8391 (1997)

    Article  ADS  Google Scholar 

  28. I. Cacelli, R. Moccia, A. Rizzo, J. Chem. Phys. 98, 8742 (1993)

    Article  ADS  Google Scholar 

  29. J.A.R. Samson, Phys. Rep. 28, 303 (1976)

    Article  ADS  Google Scholar 

  30. J.A.R. Samson, G.N. Haddad, J. Opt. Soc. Am. B 11, 277 (1994)

    Article  ADS  Google Scholar 

  31. L.C. Lee, R.W. Carlson, D.L. Judge, J. Quant. Spectr. Rad. Trans. 16, 873 (1976)

    Article  ADS  Google Scholar 

  32. C. Backx, G.R. Wight, M.J. Van der Wiel, J. Phys. B: At. Mol. Opt. Phys. 9, 315 (1976)

    Article  ADS  Google Scholar 

  33. P.M. Dehmer, Chem. Phys. Lett. 110, 79 (1984)

    Article  ADS  Google Scholar 

  34. J.A. Stephens, V. McKoy, J. Chem. Phys. 88, 1737 (1988)

    Article  ADS  Google Scholar 

  35. L. Veseth, H.P. Kelly, Phys. Rev. A 45, 4621 (1992)

    Article  ADS  Google Scholar 

  36. A. Médani, “Modélisation d’un plasma d’azote hors d’ETLC”, Ph.D. thesis No. 2463, Université Paul Sabatier Toulouse 3, France (1981) (in French)

    Google Scholar 

  37. J.P. Sarrette, A.M. Gomes, J. Bacri, Journal of High Temperature Chemical Processes, Colloque, Suppl. No 3, 1, 403 (1992) (in French)

    Google Scholar 

  38. A.M. Gomes, A. Essoltani, J. Bacri, J. Quant. Spectr. Rad. Trans. 43, 471 (1990)

    Article  ADS  Google Scholar 

  39. J. Bacri, M. Lagreca, A. Médani, Physica C 113, 403 (1982)

    Article  Google Scholar 

  40. J.P. Sarrette, A.M. Gomes, J. Bacri, C.O. Laux, C.H. Kruger, J. Quant. Spectr. Rad. Trans. 53, 125 (1995)

    Article  ADS  Google Scholar 

  41. J.P. Sarrette, A.M. Gomes, J. Bacri, J. Quant. Spectr. Rad. Trans. 53, 143 (1995)

    Article  ADS  Google Scholar 

  42. Ph. Teulet, J.P. Sarrette, A.M. Gomes, J. Quant. Spectr. Rad. Trans. 70, 159 (2001)

    Article  ADS  Google Scholar 

  43. G. Herzberg, “Spectra of diatomic Molecules“, 2nd edn. (Van Nostrand Reinhold, New-York, 1950)

    Google Scholar 

  44. K.S. Drellishak, D.P. Aeschliman, A. Bulent Cambel, Phys. Fluids 8, 1590 (1965)

    Article  ADS  Google Scholar 

  45. K.P. Huber, G. Herzberg, “Molecular Spectra and Molecular structure. IV Constants of Diatomic Molecules” (Van Nostrand Reinhold, New York, 1978)

    Google Scholar 

  46. H. Helm, P.C. Cosby, D.L. Huestis, Phys. Rev. A 30, 851 (1984)

    Article  ADS  Google Scholar 

  47. R.P. Saxon, B. Liu, J. Chem. Phys. 85, 2100 (1986)

    Article  ADS  Google Scholar 

  48. D.R. Yarkony, J. Phys. Chem. 97, 111 (1993)

    Article  Google Scholar 

  49. L. Wolniewicz, J. Chem. Phys. 51, 5002 (1969)

    Article  ADS  Google Scholar 

  50. H. Abgrall, E. Roueff, I. Drira, Astron. Astrophys. Suppl. Ser. 141, 297 (2000)

    Article  ADS  Google Scholar 

  51. A.C. Allison, A. Dalgarno, Atomic Data 1, 289 (1970)

    Article  ADS  Google Scholar 

  52. U. Fantz, D. Wünderlich, “Franck-Condon Factors, Transition Probabilities and Radiative Lifetime for Hydrogen Molecules and Their Isotopomeres” (IAEA INDC(NDS)-457 report, 2004), pp. 193–194

  53. S.R. Langhoff, J. Chem. Phys. 77, 1379 (1982)

    Article  ADS  Google Scholar 

  54. S.R. Langhoff, H.-J. Werner, P. Rosmus, J. Mol. Spectrosc. 118, 507 (1986)

    Article  ADS  Google Scholar 

  55. K.L. Steffens, J. Luque, J.B. Jeffries, D.R. Crosley, J. Chem. Phys. 106, 6262 (1997)

    Article  ADS  Google Scholar 

  56. J. Luque, D.R. Crosley, J. Chem. Phys. 109, 439 (1998)

    Article  ADS  Google Scholar 

  57. A.C.P. Bittencourt, F.V. Prudente, J.D.M. Vianna, Chem. Phys. 297, 153 (2004)

    Article  Google Scholar 

  58. V.V. Skubenich, M.M. Povch, I.P. Zapesochnyi, High Energy Chemistry 11, 92 (1977); V.V. Skubenich, M.M. Povch, I.P. Zapesochnyi, translated from Khimiya Vysokikh Energii 11, 116 (1977)

    Google Scholar 

  59. H. Guérin, J. Chim. Phys. 92, 699 (1995)

    Google Scholar 

  60. R.W. Nicholls, J. Quant. Spectr. Rad. Trans. 28, 481 (1982)

    Article  ADS  Google Scholar 

  61. R.W. Nicholls, J. Chem. Phys. 74, 6980 (1981)

    Article  ADS  Google Scholar 

  62. http://www.chemistry.ohio-state.edu/~vstakhur/FC.php

  63. D. Robinson, R.W. Nicholls, Proc. Phys. Soc., LXXI, 6, 957 (1957)

    Google Scholar 

  64. A. Essoltani, “Modélisation d’un plasma d’oxygène homogène et stationnaire à la pression atmosphérique 2000 K < T < 15000 K”, Ph.D. thesis No 276, Université Paul Sabatier Toulouse 3, France (1988) (in French)

    Google Scholar 

  65. D.R. Bates, Atomic and molecular processes (Academic Press, New-York, London, 1962), p. 252

    Google Scholar 

  66. G.V. Marr, “Photoionization processes in gases, Pure and Applied Physics” (Academic Press, New-York, London, 1967), Vol. 28, p. 228

    Google Scholar 

  67. P. Teulet, “Etude des écarts à l’équilibre radiatif et thermique dans les plasmas air et air-sodium. Application au diagnostic spectroscopique”, Ph.D. thesis No 3298, Université Paul Sabatier Toulouse 3, France (1998) (in French)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Teulet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riahi, R., Teulet, P., Cressault, Y. et al. Calculation of radiative transition probabilities and radiative recombination rate coefficients for H2, OH, H +2 and OH+ molecules. Eur. Phys. J. D 49, 185–192 (2008). https://doi.org/10.1140/epjd/e2008-00157-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2008-00157-4

PACS

Navigation