Skip to main content
Log in

Implantation of size-selected silver clusters into graphite

Linearity of implantation depth vs. scaled momentum

  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

We report on a systematic study of the implantation of size-selected Ag N + clusters on a graphite sample, for different cluster sizes (N = 1,3,7,9,13) and different impact energies (E = 1-30 keV). Results show that the implantation depth scales linearly with the momentum of the cluster, with a stopping power which depends on cluster size. We have particularly investigated the effects of the size and the geometry of the cluster on the implantation into the graphite substrate. A sort of universal behavior, which unifies different elements and different cluster geometries, can be recognized by scaling the momentum with the cluster projected surface. The stopping power of the cluster while penetrating the HOPG surface has been investigated for each cluster size, and a “molecular effect” is recognized, meaning that the stopping power is not additive in the number of atoms of the cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. U. Heiz, W.D. Schneider, J. Phys. D: Appl. Phys. 33, R85 (2000)

  2. U. Heiz, W.D. Schneider, Crit. Rev. Sol. St. Mat. Sci. 26, 251 (2001)

    Google Scholar 

  3. R. Schaub, H. Jödicke, F. Brunet, R. Monot, J. Buttet, W. Harbich, Phys. Rev. Lett. 86, 3590 (2001)

    Article  Google Scholar 

  4. D.J. Kenny, S. Weller, M. Couillard, R.E. Palmer, C.F. Sanz-Navarro, R. Smith, Eur. Phys. J. D 16, 115 (2001)

    Article  Google Scholar 

  5. S.J. Carroll, S.G. Hall, R.E. Palmer, R. Smith, Phys. Rev. Lett. 81, 3715 (1998)

    Article  Google Scholar 

  6. S.J. Carroll, K. Seeger, R.E. Palmer, Appl. Phys. Lett. 72, 305 (1998)

    Article  MATH  Google Scholar 

  7. S.J. Carroll, P. Weibel, B.v. Issendorff, L. Kuipers, R.E. Palmer, J. Phys.: Condens. Matter 8, L617 (1996)

  8. S.J. Carroll, P.D. Nellist, R.E. Palmer, S. Hobday, R. Smith, Phys. Rev. Lett. 84, 2654 (2000)

    Article  Google Scholar 

  9. S.J. Carroll, R.E. Palmer, P.A. Mulheran, S. Hobday, R. Smith, Appl. Phys. A 67, 613 (1998)

    Article  Google Scholar 

  10. S.J. Carroll, S. Pratontep, M. Streun, R.E. Palmer, S. Hobday, R. Smith, J. Chem. Phys. 113, 7723 (2000)

    Article  Google Scholar 

  11. I.M. Goldby, L. Kuipers, B.v. Issendorff, R.E. Palmer, Appl. Phys. Lett. 69, 2819 (1996)

    Article  Google Scholar 

  12. C.M. Grimaud, R.E. Palmer, J. Phys.: Condens. Matter 13, 1869 (2001)

    Article  Google Scholar 

  13. J.R. Hahn, H. Kang, Surf. Sci. 446, L77 (2000)

  14. S.G. Hall, M.B. Nielsen, R.E. Palmer, J. Appl. Phys. 83, 733 (1998)

    Article  Google Scholar 

  15. B. Kaiser, T.M. Bernhardt, K. Rademann, Appl. Phys. A 66, S711 (1998)

  16. D.J. Kenny, R.E. Palmer, C.F. Sanz-Navarro, R. Smith, J. Phys.: Condens. Matter 14, 185 (2002)

    Article  Google Scholar 

  17. S. Pratontep, P. Preece, C. Xirouchaki, R.E. Palmer, C.F. Sanz-Navarro, D.J. Kenny, R. Smith, Phys. Rev. Lett. 90, 055503 (2003)

    Article  Google Scholar 

  18. C.T. Reimann, S. Andersson, P. Bruhwiler, N. Martensson, L. Olsson, R. Erlandosson, M. Henkel, H.M. Urbassek, Nucl. Instrum. Meth. Phys. Res. B 140, 159 (1998)

    Article  Google Scholar 

  19. C.F. Sanz-Navarro, R. Smith, D.J. Kenny, S. Pratontep, R.E. Palmer, Phys. Rev. B 65, 1 (2002)

    Article  Google Scholar 

  20. W. Yamaguchi, K. Yoshimura, Y. Tai, Y. Maruyama, K. Igarashi, S. Tanemura, J. Murakami, J. Chem. Phys. 112, 9961 (2000)

    Article  Google Scholar 

  21. G. Bräuchle, S.R. Schneider, D. Illig, J. Rockenberger, R.D. Beck, M.M. Kappes, Appl. Phys. Lett. 67, 52 (1995)

    Article  Google Scholar 

  22. G. Bräuchle, S.R. Schneider, D. Illig, R.D. Beck, H. Schreiber, M.M. Kappes, Nucl. Instrum. Meth. Phys. Res. B 112, 105 (1996)

    Google Scholar 

  23. J.R. Hahn, H. Kang, Surf. Sci. 357-358, 165 (1996)

    Google Scholar 

  24. S.M. Lee, Y.H. Lee, Y.G. Hwang, J.R. Hahn, H. Kang, Phys. Rev. Lett. 82, 217 (1999)

    Article  Google Scholar 

  25. D. Marton, H. Bu, K.J. Boyd, S.S. Todorov, A.H. Al-Bayati, J.W. Rabalais, Surf. Sci. 326, L489 (1995)

  26. C.T. Reimann, P.A. Sullivan, A. Turpitz, S. Altmann, A.P. Quist, A. Bergman, S.O. Oscarsson, B.U.R. Sundqvist, P. Hakansson, Surf. Sci. 341, L1019 (1995)

  27. Y.-J. Zhu, T.A. Hansen, S. Ammerman, J.D. McBride, T.P. Beebe, J. Phys. Chem. B 105, 7632 (2001)

    Article  Google Scholar 

  28. G. Vandoni, C. Félix, R. Monot, J. Buttet, W. Harbich, Chem. Phys. Lett. 229, 51 (1994)

    Article  Google Scholar 

  29. H. Chang, A.J. Bard, J. Am. Chem. Soc. 113, 5588 (1991)

    Google Scholar 

  30. X. Chu, L.D. Schmidt, Carbon 29, 1251 (1991)

    Article  Google Scholar 

  31. F. Stevens, L.A. Kolodny, T.P. Beebe, J. Phys. Chem. B 102, 10799 (1998)

    Article  Google Scholar 

  32. S.H. Pan, International Patent Publication Number WO 93/19494 (international Bureau, World Intellectual Property Organization, 1993)

  33. S.H. Pan, E.W. Hudson, J. Davis, Rev. Sci. Instrum. 70, 1459 (1999)

    Google Scholar 

  34. R. Coratger, A. Claverie, A. Chahboun, V. Landry, F. Ajustron, J. Beauvillain, Surf. Sci. 262, 208 (1992)

    Article  Google Scholar 

  35. T. Li, B.V. King, R.J. MacDonald, G.F. Cotterill, D.J. O’Connor, Q. Yang, Surf. Sci. 312, 399 (1994)

    Article  Google Scholar 

  36. S. Gilb, M. Blom, G. Bräuchle, C. Stoermer, R. Wellmann, M.M. Kappes (not published)

  37. J.R. Hahn, H. Kang, J. Vacuum Sci. Technol. A 17, 1606 (1999)

    Article  Google Scholar 

  38. V.I. Shulga, P. Sigmund, Nucl. Instrum. Meth. Phys. Res. B 47, 236 (1990)

    Article  Google Scholar 

  39. V.I. Shulga, Nucl. Instrum. Meth. Phys. Res. B 58, 422 (1991)

    Article  Google Scholar 

  40. Z. Pan, Nucl. Instrum. Meth. Phys. Res. B 66, 325 (1992)

    Google Scholar 

  41. V. Bonacić-Koutecky, L. Cespiva, P. Fantucci, J. Koutecky, J. Chem. Phys. 98, 7981 (1993)

    Article  Google Scholar 

  42. A. Fortunelli (private communication)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Seminara.

Additional information

Received: 24 November 2003, Published online: 10 February 2004

PACS:

61.46. + w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals - 68.55.Ln Defects and impurities: doping, implantation, distribution, concentration, etc. - 79.20.Rf Atomic, molecular, and ion beam impact and interactions with surfaces - 81.05.Uw Carbon, diamond, graphite

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seminara, L., Convers, P., Monot, R. et al. Implantation of size-selected silver clusters into graphite. Eur. Phys. J. D 29, 49–56 (2004). https://doi.org/10.1140/epjd/e2004-00011-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2004-00011-9

Keywords

Navigation