1 Introduction

The leptonic decays of the \(B_{s,d}\) mesons play an important role in the standard model (SM) and the new physics (NP) [1, 2]. The leptonic decays are highly suppressed in the SM because flavor-changing neutral current decays are generated through W-box and Z-penguin diagrams. Furthermore, the branching fractions of the leptonic decays of scalar meson go through an additional helicity suppression factor by \(m_\mu ^2/M_{S}^2\), where \(m_\mu \) and \(M_{S}\) denote the masses of the muon lepton and the scalar meson, respectively. The suppression can be removed in several NP models, such as the two-Higgs-doublet models [3], the minimal supersymmetric standard model [4], the next minimal supersymmetric standard model [5], the dark matter [6], the universal extra dimensional model [7], the lepton universality violation model [8], the fourth generation of fermions [9], and so on [10]. The branching fractions of \(B_{s,d} \rightarrow \mu ^+ \mu ^-\) measured by the CMS and LHCb Collaborations [2], and predicted within the SM [1] with NNLO QCD [11] and NLO EW [12] corrections are presented in Table 1.

On one hand, the experimental branching fractions of \(B_{s,d} \rightarrow \mu ^+ \mu ^-\) are measured from the dimuon distributions by the CMS and LHCb Collaborations [2]. Thus, the process \(B^*_{s,d} \rightarrow \mu ^+ \mu ^-\)  will enhance the dimuon distributions for mass splitting between \(B_{s,d}\) and \(B^*_{s,d}\) at approximately 45 MeV. On the other hand, the hadronic contribution \(B_{s,d} \rightarrow B^*_{s,d} \gamma \rightarrow \mu ^+ \mu ^-\) is missing in the theoretical prediction [1]. Therefore, this study focuses on \(B^*_{s,d} \rightarrow \mu ^+ \mu ^-\)  and its impact on \(B_{s,d} \rightarrow \mu ^+ \mu ^-\) within SM. The \(B_s \rightarrow B_s^* \gamma \rightarrow \mu ^+ \mu ^- \gamma \) process was considered in Ref. [13]. \(B^*_{s,d} \rightarrow \mu ^+ \mu ^-\) was recently considered in Refs. [14, 15]. Moreover, Refs. [16, 17]. also investigated the hadronic contribution of charmonium in \(B \rightarrow K^{(*)} \ell ^{+} \ell ^{-}\) and \(B \rightarrow X_s \gamma \).

Table 1 The branching fractions of \(B_{s,d} \rightarrow \mu ^+ \mu ^-\) measured by the CMS and LHCb Collaborations [2] and predicted within the SM [1] with NNLO QCD [11] and NLO EW [12] corrections included

2 The Decay of \(B_s^* (B_d^*) \rightarrow \mu ^+\mu ^-\)

An effective Lagrangian related to \(b \bar{s} \rightarrow \mu ^+ \mu ^-\) within the SM is given in Refs. [1820]

$$\begin{aligned} \mathscr {L} = \mathscr {N}\biggl [C_7 ^\mathrm{eff}(\mu _f) \mathscr {O}^\gamma _7 + C_9^\mathrm{eff} (\mu _f) \mathscr {O}^V_9+ C_{10} (\mu _f)\mathscr {O}^A_{10}\biggl ],\nonumber \\ \end{aligned}$$
(1)

where \(\mathscr {N}=\frac{G_F}{\sqrt{2}} V_{tb} V^{*}_{ts}\frac{e^2}{4\pi ^2}\), and the operators \(\mathscr {O}_{7,9,10}\) read as follows:

$$\begin{aligned} \mathscr {O}^\gamma _7= & {} - \frac{2im_b (p_\mu ^\nu +p_{\bar{\mu }}^\nu )}{(p_\mu +p_{\bar{\mu }})^2} (\bar{s}\sigma _{\rho \nu }P_R b)(\bar{\mu }\gamma ^{\rho } \mu ), \end{aligned}$$
(2)
$$\begin{aligned} \mathscr {O}^V_9= & {} (\bar{s}\gamma _\rho P_Lb)(\bar{\mu }\gamma ^{\rho } \mu ), \end{aligned}$$
(3)
$$\begin{aligned} \mathscr {O}^A_{10}= & {} (\bar{s}\gamma _\rho P_Lb)(\bar{\mu }\gamma ^{\rho }\gamma _5 \mu ), \end{aligned}$$
(4)

where \(P_L=(1-\gamma _5)/2\) , \(P_R=(1+\gamma _5)/2\). The Wilson coefficients are \(C^\mathrm{eff}_{7, 9, 10}(\mu _f)=(-0.316, 4.403-0.47i, -4.493)\) at \(\mu _f=m_b=4.5\) GeV [15]. The superscripts \(\gamma \), V, and A denote the contributions from photon, vector current, and axial vector current, respectively.

The relationships between the quark level operators and the meson are described as follows:

$$\begin{aligned}&\langle 0|\bar{s}\gamma ^\mu b|B_s^*(q,\varepsilon )\rangle = m_{B_s^*}\,f_{B_s^*}\,\varepsilon ^\mu , \end{aligned}$$
(5)
$$\begin{aligned}&\langle 0|\bar{s}\sigma ^{\mu \nu } b|B_s^*(q,\varepsilon )\rangle = -i\,f_{B_s^*}^T(q^\mu \varepsilon ^\nu -\varepsilon ^\mu q^\nu ), \end{aligned}$$
(6)
$$\begin{aligned}&\langle 0|\bar{s}\gamma ^\mu \gamma _5 b|B_s(q)\rangle = if_{B_s}\,q^\mu , \end{aligned}$$
(7)

where the three decay constants \(f_{B_s},~ f_{B_s^*}\), and \(f_{B_s^*}^T\) depend on the renormalization scale, whose relationships have been investigated in the heavy-quark limit of the Ref.  [21]. Ignoring the mass difference between \(B_s\) and \(B_s^*\) and the high-order QCD corrections, we derive the following expression:

$$\begin{aligned} f_{B_s^*}=f_{B_s^*}^T=\,f_{B_s}. \end{aligned}$$
(8)

Afterward, the \(B_s^* (B_s) \rightarrow \mu ^+\mu ^-\)  amplitudes are expressed as follows  [13]:

$$\begin{aligned} \mathscr {M}({B_s^*\rightarrow \mu ^+\mu ^-})= & {} f_{B_s^*}\frac{\mathscr {N}}{2} m_{B_s^*}\bar{\mu }\slash \!\!\!{\varepsilon }\Big [C_V^\mathrm{eff}+C_{10}\gamma _5 \Big ] \mu , \nonumber \\ \mathscr {M}({B_s\rightarrow \mu ^+\mu ^-})= & {} if_{B_s}\mathscr {N}C_{10} m_\mu \bar{\mu }\gamma _5 \mu , \end{aligned}$$
(9)

where

$$\begin{aligned} C_V^\mathrm{eff}=C_9^\mathrm{eff}+2\frac{m_b}{m_{B_s^*}} C_7^\mathrm{eff}. \end{aligned}$$
(10)

The helicity suppression factor \(m_\mu ^2/m_M^2\) in the decay width is removed in the vector meson decay. Then the \(B_s^* (B_s) \rightarrow \mu ^+\mu ^-\)  decay widths are obtained:

$$\begin{aligned} \Gamma ({B_s^* \rightarrow \mu ^+\mu ^-})= & {} \frac{G_f^2\alpha _{em}^2}{96\pi ^3}\left| V_{tb}V_{ts}^*\right| ^2\Big (\left| C_{10}\right| ^2 +\left| C_{V}^\mathrm{eff}\right| ^2) \nonumber \\&\times m_{B_s^*}^3f_{B_s^*}^2\Big (1+\mathcal{{O}}(m_\mu ^2/m_{B_s}^2)\Big ), \nonumber \\ \Gamma ({B_s \rightarrow \mu ^+\mu ^-})= & {} \frac{G_f^2\alpha _{em}^2}{16\pi ^3}\left| V_{tb}V_{ts}^*\right| ^2\left| C_{10}\right| ^2\nonumber \\&\times m_\mu ^2m_{B_s}f_{B_s}^2\Big (1+\mathcal{{O}}(m_\mu ^2/m_{B_s}^2)\Big ) ,\nonumber \\ \frac{ \Gamma ({B_s^* \rightarrow \mu ^+\mu ^-})}{\Gamma ({B_s \rightarrow \mu ^+\mu ^-})}= & {} \frac{\left( \left| C_{10}\right| ^2 +\left| C_{V}^\mathrm{eff}\right| ^2 \right) m_{B_s^*}^3f_{B_s^*}^2}{6\left| C_{10}\right| ^2 m_\mu ^2m_{B_s}f_{B_s}^2}\nonumber \\&\times \Big (1 + \mathcal{{O}}(m_\mu ^2/m_{B_s}^2)\Big ). \end{aligned}$$
(11)

The decay width ratio is approximately 700 for \(B_s^{(*)}\) and \(B_d^{(*)}\) both.

Fig. 1
figure 1

Feynman diagrams of \(B_{s,d} \rightarrow B^*_{s,d} \gamma \rightarrow \mu ^+ \mu ^-\)

3 The impact of \(B_s^* (B_d^*) \rightarrow \mu ^+\mu ^-\) on \(B_s (B_d) \rightarrow B_s^* (B_d^*) \gamma \rightarrow \mu ^+\mu ^-\)

Furthermore, \(B^*_{s,d}\) will impact on the \(B_{s,d}\)  leptonic decay through the loop contribution  \(B_{s,d} \rightarrow B^*_{s,d} \gamma \rightarrow \mu ^+ \mu ^-\). The Feynman diagrams are shown in Fig. 1. This calculation is a part of EM corrections to \(B_{s,d} \rightarrow \mu ^+ \mu ^-\). The NLO EW corrections of \(B_{s,d} \rightarrow \mu ^+ \mu ^-\) within the SM have been calculated in Refs. [1, 12]. The hadronic contribution of \(B_{s,d} \rightarrow B^*_{s,d} \gamma _\mathrm{soft} \rightarrow \mu ^+ \mu ^- +\gamma _\mathrm{soft}\) has been calculated in Ref. [13]. However, the contribution of \(B_{s,d} \rightarrow B^*_{s,d} \gamma \rightarrow \mu ^+ \mu ^-\) is missing in the previous calculation. This calculation is incomplete. For instance, there is double counting between the NLO EW corrections \(B_{s} \rightarrow b+ s + \gamma \rightarrow \mu ^+ \mu ^-\) [12] and this calculation \(B_{s} \rightarrow B^*_{s} \gamma \rightarrow \mu ^+ \mu ^-\). We considered that the contribution of \(B_{s} \rightarrow B^*_{s} \gamma \rightarrow \mu ^+ \mu ^-\) will be retained only when the \(B^*_s\) is nearly on-shell. If \(B^*_s\) is far away from mass shell, \(B_{s} \rightarrow b+ s + \gamma \rightarrow \mu ^+ \mu ^-\) is dominant. As is well known, the propagator of hadron will be modified duo to the off-shell of hadron [22], and the Wilson coefficients \(C^\mathrm{eff}_{7, 9, 10}\) will be modified too [17, 19]. Therefore, this treatment may be regarded as a crude estimate, and the error may be large in this treatment.

The vertex of \(B_{s,d} \rightarrow B^*_{s,d} \gamma \) is expressed as the following operator [23, 24]:

$$\begin{aligned} \mathscr {M}_{B_s B_s^{*} \gamma }= & {} \sum _{q=s,b}<B_s^{*} \gamma | i e e_q \bar{q} (p_{\bar{q}}) \gamma _\mu q (p_q)| B_s> \\= & {} \sum _{q=s,b}\varepsilon ^{\mu }_\gamma p_\gamma ^\nu <B_s^{*} | iee_q \bar{q} (p_{\bar{q}}) \frac{i \sigma _{\mu \nu }}{2m_q} q (p_q)| B_s> . \end{aligned}$$

We can simplify the matrix element \(<B_s^{*} | \bar{q} (p) \sigma _{\mu \nu } q (p)| B_s\!> \) with the procedure in Refs. [25, 26],Footnote 1

$$\begin{aligned} \mathscr {M}_{B_s B_s^{*} \gamma }= & {} \sum _{q=s,b}\frac{-e e_q}{2 m_q}\varepsilon ^{\mu }_\gamma p_\gamma ^\nu <B_s^{*} | \bar{q} (p) \sigma _{\mu \nu } q (p)| B_s> \nonumber \\= & {} i \epsilon _{\mu \nu \alpha \beta } \varepsilon ^{\mu }_\gamma p^{\nu }_\gamma \varepsilon ^{\alpha }_{B^*_s } p^{\beta }_{B^*_s }\sum _{q=s,b}\left( \frac{e e_q}{ m_q}\right) \mathcal{{I}}. \end{aligned}$$
(12)

\(\mathcal {I}\) is related to the wave functions of \(B^*_s\) and \(B_s\) [25], which is \(\mathcal{{I}}=<B_s| j_0(p_\gamma r)| B_s^{*}>\sim 1\) [27, 28]. We can rewrite Eq. (12) as follows:

$$\begin{aligned} \mathscr {M}_{B_s B_s^{*} \gamma }= & {} i \frac{g_{B_s B^*_s \gamma }}{m_{B_s^*}} \epsilon _{\mu \nu \alpha \beta } \varepsilon ^{\mu }_\gamma p^{\nu }_\gamma \varepsilon ^{\alpha }_{B^*_s }p^{\beta }_{B^*_s }. \end{aligned}$$
(13)

Here the dimensionless vector–scalar–photon coupling constant \(g_{B_s B^*_s \gamma }\) is related to the magnetic moments of b and s quarks; and the phase factor i is consistent with the amplitude of \(\gamma ^*\rightarrow VP\) in Ref. [29].

Ultraviolet (UV) logarithmic divergences are observed in the evaluation of loop integrals. In the NLO EW corrections of \(B_{s,d} \rightarrow \mu ^+ \mu ^-\) [12], the UV divergences are canceled by the renormalization of \(C_{10}\). Just as \(R-\) value of hadron production in \(e^+e^-\) annihilation, the hadronic contributions will return the quark contributions if the \(B^*_{s}\) is far away from the mass shell. So that the UV part of loop integral will be suppressed due to avoid the double counting. We introduce a cutoff regularization scheme for the following UV divergence integral:

$$\begin{aligned}&\int \frac{\mathrm{d}^4 q}{(2\pi )^4}\frac{1}{\left( q_i^2-m_i^2\right) \left( q_j^2-m_j^2\right) } \nonumber \\&\quad \rightarrow \int \frac{\mathrm{d}^4 q}{(2\pi )^4}\left[ \frac{1}{\left( q_i^2-m_i^2\right) \left( q_j^2-m_j^2\right) }\right. \nonumber \\&\left. -\frac{1}{\left( q_i^2-(m_i+\Lambda )^2\right) \left( q_j^2-(m_j+\Lambda )^2\right) }\right] , \end{aligned}$$
(14)

where \(i,j= B_s^*,~\gamma \) or \(\mu \), and \(q_i\) corresponds to the i momentum in the loop. \(\Lambda \ll M_W\) for the amplitude is UV finite when W boson is involved. The hadronic contribution will be suppressed when \(\sqrt{q_j^2}-m_j\gg \Lambda _{QCD}\), where \(\Lambda \) is approximately several \(\Lambda _{QCD}\). The cutoff regularization scheme is similar to Pauli–Villars regularization scheme; however, the cutoff regularization scheme acts on two propagators. The Pauli–Villars regularization scheme of the UV divergence integral is the same as the form factor \(\mathcal{F}\) introduced in the \(B_s B^*_s \gamma \) vertex in Ref. [30],

$$\begin{aligned} \mathcal{F} = \left( \frac{\Lambda ^2 - m_{B^*_s}^2}{\Lambda ^2-q_{B^*_s}^2}\right) , \end{aligned}$$
(15)

for

$$\begin{aligned} \frac{1}{q_{B^*_s}^2-m_{B^*_s}^2}\mathcal{F}= \frac{1}{q_{B^*_s}^2-m_{B^*_s}^2}-\frac{1}{q_{B^*_s}^2-\Lambda ^2}. \end{aligned}$$
(16)

However, the cutoff regularization scheme acts on the UV divergence term, as well as the two propagators. Then the soft contribution will be maintained in our calculation.

The amplitude from \(B_s \rightarrow B^*_s \gamma \rightarrow \mu ^+ \mu ^-\) can be written as follows:

$$\begin{aligned}&\mathscr {M}({B_s\rightarrow B^*_s \gamma \rightarrow \mu ^+\mu ^-})\nonumber \\&\quad =i e \mathscr {N} g_{B_s B^*_s \gamma } R(\Lambda ) C_V^\mathrm{eff}f_{B_s^*}m_\mu \bar{\mu }\gamma _5 \mu , \end{aligned}$$
(17)

where \(C_V^\mathrm{eff}=C_9^\mathrm{eff}+2m_b/m_{B_s^*} C_7^\mathrm{eff}\) and considered as a constant. \(m_\mu \) reappears in the amplitude of the leptonic decay of the scalar mesons. The \(R(\Lambda )\) factor serves as a function of the high energy cut, as shown in Fig. 2. Detailed information on the \(R(\Lambda )\) factor is provided in the appendix.

Fig. 2
figure 2

\(R(\Lambda )\) of \(B_{s} \rightarrow \mu ^+ \mu ^-\) defined in Eq. (17) as a function of the cut off energy

Compared with Eq. (9), the previous amplitude added the factor F,

$$\begin{aligned} F({B_s^*})= & {} \frac{\mathscr {M}({B_s\rightarrow B^*_s \gamma \rightarrow \mu ^+\mu ^-})}{\mathscr {M}({B_s\rightarrow \mu ^+\mu ^-})}\nonumber \\= & {} \frac{C_V^\mathrm{eff}f_{B_s^*}}{C_{10}f_{B_s}} {e g_{B_s B^*_s \gamma }} R(\Lambda ). \end{aligned}$$
(18)

We can estimate \(g_{B_s B^*_s \gamma }\) in several ways, including the heavy-quark and chiral effective theories [31, 32] with the radiative and pion transition widths of \(D^{*+}\), the light cone QCD sum rules [33, 34], and the radiative M1 decay widths of \(B^*_s \rightarrow B_s \gamma \) from the potential model [27, 35].

The heavy-quark and chiral effective theories yield the following expression [1315]:

$$\begin{aligned} g_{B_d B^*_d \gamma }= & {} -1.7\pm 0.2,\nonumber \\ g_{B_s B^*_s \gamma }= & {} -1.2\pm 0.2. \end{aligned}$$
(19)

The light cone QCD sum rules yield the following expression [33, 34]:

$$\begin{aligned} g_{B_d B^*_d \gamma }= & {} -2.3\pm 0.3,\nonumber \\ g_{B_s B^*_s \gamma }= & {} -1.5\pm 0.2. \end{aligned}$$
(20)

The radiative M1 decay width of \(B^*_s \rightarrow B_s \gamma \) is derived as follows:

$$\begin{aligned} g_{B_s B^*_s \gamma }=-m_{ B^*_s}\left( \frac{12 \pi }{E_\gamma ^3} \Gamma (B^*_s \rightarrow B_s \gamma )\right) ^{1/2}. \end{aligned}$$
(21)

The predicted M1 widths are 0.15–400  eV and 10–300  eV for \(B^*_s \rightarrow B_s \gamma \) and \(B^*_d \rightarrow B_d \gamma \), respectively [24, 26, 27, 35, 36]. Recently new predicted M1 widths were given in Ref. [28]:

$$\begin{aligned} \Gamma _{B_s^* \rightarrow B_s \gamma }= & {} 0.313~ \mathrm{KeV},\nonumber \\ \Gamma _{B^*_d \rightarrow B_d \gamma }= & {} 1.23~ \mathrm{KeV}. \end{aligned}$$
(22)

Then we can get the following value:

$$\begin{aligned} g_{B_d B^*_d \gamma }= & {} -3.8,\nonumber \\ g_{B_s B^*_s \gamma }= & {} -2.0. \end{aligned}$$
(23)

4 Numerical result

The parameters in the numerical calculation are selected as follows [37]:

$$\begin{aligned}&\Lambda =1.2 ~\mathrm{GeV},\nonumber \\&m_b=4.2 ~\mathrm{GeV},\nonumber \\&\alpha _{em}=1/137. \end{aligned}$$
(24)

In the branch fraction of \(B^*_{s,d}\), the weak decay is less than the M1 decay, \(\Gamma _\mathrm{tot}(B^*_{s,d})\approx \Gamma (B^*_{s,d} \rightarrow B_{s,d} \gamma )\). The following ratio is obtained:

$$\begin{aligned} \frac{ Br({B_s^*\rightarrow \mu ^+\mu ^-})}{Br({B_s\rightarrow \mu ^+\mu ^-})}= & {} (0.34 \pm 0.03) \times \frac{\mathrm eV}{\Gamma (B^*_{s} \rightarrow B_{s} \gamma )}, \nonumber \\ \frac{ Br({B_d^*\rightarrow \mu ^+\mu ^-})}{Br({B_d\rightarrow \mu ^+\mu ^-})}= & {} (0.33 \pm 0.03)\times \frac{\mathrm eV}{\Gamma (B^*_{d} \rightarrow B_{d} \gamma )}.\nonumber \\ \end{aligned}$$
(25)

The main uncertainty is derived from the \(f_{B_{s,d}}^*\) value. The dimuon invariant mass distribution measured by the CMS and LHCb Collaborations in Ref.  [2] should include the \(B^*_{s,d}\rightarrow \mu ^+ \mu ^-\) contributions. If \(\Gamma (B^*_{s} \rightarrow B_{s} \gamma )=1~\)eV  [27], we can get \( \frac{ Br({B_s^*\rightarrow \ell ^+\ell ^-})}{Br({B_s\rightarrow \mu ^+\mu ^-})}=0.34 \) for \(\ell =e,~\mu \). Afterward, \(B_s^*\rightarrow e^+e^-\) may be searched by the CMS and LHCb experiments with larger data samples.

Table 2 The branching fractions of \(B_{s,d} \rightarrow \mu ^+ \mu ^-\) measured by the CMS and LHCb Collaborations [2] and updated SM prediction with \(\Gamma (B^*_{s,d} \rightarrow B_{s,d} \gamma )=313, 1230\) eV [28]

Moreover, we observe that the amplitude of \(B_{s,d}\rightarrow \mu ^+\mu ^-\) is modified by the contributions of \(B_{s,d}^*\) with a factor

$$\begin{aligned} F({B_{s,d}^*})= & {} (0.011\pm 0.006) \sqrt{\frac{\Gamma (B^*_{s,d} \rightarrow B_{s,d} \gamma )}{100 \mathrm{eV}}} , \end{aligned}$$
(26)

if \(\Gamma (B^*_{s,d} \rightarrow B_{s,d} \gamma )\sim 100\) eV. The main uncertainty is caused by the \(\Lambda \) value. The new predictions of \(\Gamma (B_{s,d} \rightarrow \mu ^+\mu ^-)\) are provided as follows:

$$\begin{aligned}&Br(B_{s} \rightarrow \mu ^+ \mu ^-)=(36.6 \pm 2.3 ) \times \\&\quad \times \left( 1 + ( 0.023 \pm 0.012) \sqrt{\frac{\Gamma _\mathrm{tot}(B^*_{s} )}{100 \mathrm{eV}}}\right) \times 10^{-10},\\&Br(B_{d} \rightarrow \mu ^+ \mu ^-) =(10.6 \pm 0.9) \times \nonumber \\&\quad \times \left( 1 + ( 0.023 \pm 0.012)\sqrt{\frac{\Gamma _\mathrm{tot}(B^*_{d} )}{100 \mathrm{eV}}}\right) \times 10^{-11}. \end{aligned}$$

If \(\Gamma (B^*_{s,d} \rightarrow B_{s,d} \gamma )=200\) eV, then this factor will increase the \(\Gamma (B_{s,d} \rightarrow \mu ^+\mu ^-)\) decay width by a factor of \((3.3 \pm 1.7)\%\), which is approximately a factor 10 times larger than the neglect NLO EW correction factor \(0.3\%\) at the decay width in Ref. [1]. In addition, the corresponding \(g_{B_{s,d} B^*_{s,d} \gamma }=-1.5\) about a factor 15 times larger than \(e_q e=-1/3\sqrt{4\pi \alpha _{em}}=-0.10\). \(\Gamma (B^*_{s,d} \rightarrow B_{s,d} \gamma )\) may be measured through two-body decay \(B^*_{s,d}\rightarrow J/\psi +M\) by CMS and LHCb.

If \(\Gamma (B^*_{s,d} \rightarrow B_{s,d} \gamma )=313, 1230\) eV [28], then we can get

$$\begin{aligned} \frac{ Br({B_s^*\rightarrow \mu ^+\mu ^-})}{Br({B_s\rightarrow \mu ^+\mu ^-})}= & {} (1.1 \pm 0.1) \times 10^{-3}, \nonumber \\ \frac{ Br({B_d^*\rightarrow \mu ^+\mu ^-})}{Br({B_d\rightarrow \mu ^+\mu ^-})}= & {} (2.7 \pm 0.3)\times 10^{-4}. \end{aligned}$$
(27)

New predictions of \(\Gamma (B_{s,d} \rightarrow \mu ^+\mu ^-)\) are provided as follows:

$$\begin{aligned}&Br(B_{s} \rightarrow \mu ^+ \mu ^-)=(3.8 \pm 0.3 )\times 10^{-9}\nonumber ,\\&Br(B_{d} \rightarrow \mu ^+ \mu ^-) =(1.2 \pm 0.1) \times 10^{-10},\nonumber \\&\frac{Br(B_{d} \rightarrow \mu ^+ \mu ^-)}{Br(B_{s} \rightarrow \mu ^+ \mu ^-)}=0.031\pm 0.0036. \end{aligned}$$
(28)

The numerical results are shown in Table 2 too.

5 Summary

In summary, this study investigated \(B^*_{s,d}\rightarrow \mu ^+ \mu ^-\) in the dimuon distributions and the hadronic contribution \(B_{s,d} \rightarrow B^*_{s,d} \gamma \rightarrow \mu ^+ \mu ^-\). The \( \mu ^+ \mu ^-\) decay widths of the vector mesons \(B^*_{s,d}\) are approximately a factor of 700 larger than the corresponding scalar mesons \(B_{s,d}\). The obtained ratio of the branching fractions \(\frac{ Br({B_{s,d}^*\rightarrow \mu ^+\mu ^-})}{{Br({B_{s,d}\rightarrow \mu ^+\mu ^-})}}\) is approximately \(\frac{0.3 \times \mathrm{eV}}{{\Gamma (B^*_{s,d} \rightarrow B_{s,d} \gamma )}}\). The hadronic contribution \(B_{s,d} \rightarrow B^*_{s,d} \gamma \rightarrow \mu ^+ \mu ^-\) is also estimated. The relative increase in the \(B_{s,d}\rightarrow \mu ^+\mu ^-\) amplitude is approximately \((0.01\pm 0.006) \sqrt{\frac{{\Gamma (B^*_{s,d} \rightarrow B_{s,d} \gamma )}}{{100~ \mathrm{eV}}}}\). If we select \(\Gamma (B^*_{s,d} \rightarrow B_{s,d} \gamma )=2~\)eV, then the branching fractions of the vector mesons to the lepton pair are \(5.3 \times 10^{-10}\) and \(1.6 \times 10^{-11}\) for \(B^*_{s}\) and \(B^*_{d}\), respectively. If we select \(\Gamma (B^*_{s,d} \rightarrow B_{s,d} \gamma )=200~\)eV, then the updated branching fractions of the scalar mesons to the muon pair are \((3.78 \pm 0.25)\times 10^{-9}\) and \((1.09 \pm 0.09)\times 10^{-10}\) for \(B_{s}\) and \(B_{d}\), respectively. If we select the recent predicted M1 widths \(\Gamma (B^*_{s,d} \rightarrow B_{s,d} \gamma )=313, 1230\) eV [28], then the updated branching fractions are \((3.8\pm 0.3 ) \times 10^{-9}\) and \((1.2 \pm 0.1) \times 10^{-10}\) for \(B_{s}\rightarrow \mu ^+\mu ^-\) and \(B_{d}\rightarrow \mu ^+\mu ^-\), respectively. Further studies on \(B^*_{s,d}\), including those on dielectron decay and two-body decay with \(J/\psi \) should be conducted.