Skip to main content
Log in

Longitudinally polarized photoproduction of heavy flavors at next-to-leading order of QCD

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We present a phenomenological study of charm quark photoproduction in longitudinally polarized lepton–hadron collisions at next-to-leading order accuracy of QCD. Our results are based on a recently developed, flexible parton-level Monte Carlo program for spin-dependent heavy flavor hadroproduction, which we extend to deal also with both direct and resolved photon contributions. The subsequent hadronization into charmed mesons is modeled in our calculations, which allows us to compare with data on double-spin asymmetries for D 0 meson production taken by the COMPASS collaboration. In general, next-to-leading order QCD corrections are found to be very significant and do not cancel in spin asymmetries. We elucidate the role of the individual hard scattering subprocesses and determine the range of parton momentum fractions predominantly probed for charm production at COMPASS. Theoretical uncertainties are estimated by varying renormalization and factorization scales and parameters controlling the hadronization of the charm quarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. For a recent overview and discussions of the spin sum rule and orbital angular momentum, see the talks given at the INT workshop on “Orbital Angular Momentum in QCD”, INT, Seattle, 2012, http://www.int.washington.edu/PROGRAMS/12-49w.

References

  1. D. de Florian, R. Sassot, M. Stratmann, W. Vogelsang, Phys. Rev. Lett. 101, 072001 (2008)

    Article  ADS  Google Scholar 

  2. D. de Florian, R. Sassot, M. Stratmann, W. Vogelsang, Phys. Rev. D 80, 034030 (2009)

    Article  ADS  Google Scholar 

  3. J. Blumlein, H. Bottcher, Nucl. Phys. B 841, 205 (2010)

    Article  ADS  Google Scholar 

  4. E. Leader, A.V. Sidorov, D.B. Stamenov, Phys. Rev. D 82, 114018 (2010)

    Article  ADS  Google Scholar 

  5. B. Jager, A. Schafer, M. Stratmann, W. Vogelsang, Phys. Rev. D 67, 054005 (2003)

    Article  ADS  Google Scholar 

  6. B. Jager, M. Stratmann, W. Vogelsang, Phys. Rev. D 70, 034010 (2004)

    Article  ADS  Google Scholar 

  7. A. Adare et al. (PHENIX Collaboration), Phys. Rev. D 76, 051106 (2007)

    Article  ADS  Google Scholar 

  8. A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett. 103, 012003 (2009)

    Article  ADS  Google Scholar 

  9. A. Adare et al. (PHENIX Collaboration), Phys. Rev. D 79, 012003 (2009)

    Article  ADS  Google Scholar 

  10. B.I. Abelev et al. (STAR Collaboration), Phys. Rev. Lett. 97, 252001 (2006)

    Article  ADS  Google Scholar 

  11. B.I. Abelev et al. (STAR Collaboration), Phys. Rev. Lett. 100, 232003 (2008)

    Article  ADS  Google Scholar 

  12. L. Adamczyk et al. (STAR Collaboration), Phys. Rev. D 86, 032006 (2012)

    Article  ADS  Google Scholar 

  13. P. Djawotho (for the STAR Collaboration), arXiv:1106.5769

  14. P. Djawotho (for the STAR Collaboration), J. Phys. Conf. Ser. 295, 012061 (2011)

    Article  ADS  Google Scholar 

  15. D. de Florian, R. Sassot, M. Stratmann, W. Vogelsang, talk presented at “DIS2011”, April 2011, Newport News, VA, arXiv:1108.3955

  16. D. de Florian, R. Sassot, M. Stratmann, W. Vogelsang, Prog. Part. Nucl. Phys. 67, 251 (2012)

    Article  ADS  Google Scholar 

  17. E.C. Aschenauer et al., report on “The RHIC Spin Program: Achievements and Future Opportunities”, BNL (2012). http://www.bnl.gov/npp/docs/RHIC-Spin-WriteUp-121105.pdf

  18. D. Boer et al., INT report on EIC Science. arXiv:1108.1713

  19. A. Accardi et al., report on “Electron Ion Collider: The Next QCD Frontier—Understanding the glue that binds us all”. arXiv:1212.1701

  20. E.C. Aschenauer, R. Sassot, M. Stratmann, Phys. Rev. D 86, 054020 (2012)

    Article  ADS  Google Scholar 

  21. A. Airapetian et al. (HERMES Collaboration), Phys. Rev. Lett. 84, 2584 (2000)

    Article  ADS  Google Scholar 

  22. A. Airapetian et al. (HERMES Collaboration), J. High Energy Phys. 1008, 130 (2010)

    Article  ADS  Google Scholar 

  23. B. Adeva et al. (Spin Muon Collaboration), Phys. Rev. D 70, 012002 (2004)

    Article  ADS  Google Scholar 

  24. E.S. Ageev et al. (COMPASS Collaboration), Phys. Lett. B 633, 25 (2006)

    Article  ADS  Google Scholar 

  25. C. Adolph et al. (COMPASS Collaboration), arXiv:1202.4064

  26. M. Alekseev et al. (COMPASS Collaboration), arXiv:0802.3023

  27. M. Alekseev et al. (COMPASS Collaboration), Phys. Lett. B 676, 31 (2009)

    Article  ADS  Google Scholar 

  28. I. Bojak, M. Stratmann, Phys. Lett. B 433, 411 (1998)

    Article  ADS  Google Scholar 

  29. I. Bojak, M. Stratmann, Nucl. Phys. B 540, 345 (1999) [Erratum-ibid. 569, 694(E) (2000)]

    Article  ADS  Google Scholar 

  30. Z. Merebashvili, A.P. Contogouris, G. Grispos, Phys. Rev. D 62, 114509 (2000) [Erratum-ibid. 69, 019901 (2004)]

    Article  ADS  Google Scholar 

  31. Z. Merebashvili, A.P. Contogouris, G. Grispos, Phys. Lett. B 482, 93 (2000)

    Article  ADS  Google Scholar 

  32. B. Jager, M. Stratmann, W. Vogelsang, Phys. Rev. D 68, 114018 (2003)

    Article  ADS  Google Scholar 

  33. B. Jager, M. Stratmann, W. Vogelsang, Eur. Phys. J. C 44, 533 (2005)

    Article  ADS  Google Scholar 

  34. C. Hendlmeier, A. Schafer, M. Stratmann, Eur. Phys. J. C 55, 597 (2008)

    Article  ADS  Google Scholar 

  35. B. Jager, Phys. Rev. D 78, 034017 (2008)

    Article  ADS  Google Scholar 

  36. J. Riedl, A. Schafer, M. Stratmann, Phys. Rev. D 80, 114020 (2009)

    Article  ADS  Google Scholar 

  37. I. Bojak, M. Stratmann, Phys. Rev. D 67, 034010 (2003)

    Article  ADS  Google Scholar 

  38. M. Cacciari, P. Nason, R. Vogt, Phys. Rev. Lett. 95, 122001 (2005)

    Article  ADS  Google Scholar 

  39. K. Kurek Habilitation Thesis, National Centre of Nuclear Research, Swierk, November 2011

  40. C. Franco Ph.D. Thesis, Universidade Tecnica de Lisboa, December 2011

  41. C. Franco (for the COMPASS Collaboration), arXiv:1208.6567

  42. M.L. Mangano, P. Nason, G. Ridolfi, Nucl. Phys. B 373, 295 (1992)

    Article  ADS  Google Scholar 

  43. S. Frixione, M.L. Mangano, P. Nason, G. Ridolfi, Nucl. Phys. B 412, 225 (1994)

    Article  ADS  Google Scholar 

  44. R.K. Ellis, P. Nason, Nucl. Phys. B 312, 551 (1989)

    Article  ADS  Google Scholar 

  45. J. Smith, W.L. van Neerven, Nucl. Phys. B 374, 36 (1992)

    Article  ADS  Google Scholar 

  46. W. Beenakker, H. Kuijf, W.L. van Neerven, J. Smith, Phys. Rev. D 40, 54 (1989)

    Article  ADS  Google Scholar 

  47. W. Beenakker, W.L. van Neerven, R. Meng, G.A. Schuler, J. Smith, Nucl. Phys. B 351, 507 (1991)

    Article  ADS  Google Scholar 

  48. P. Nason, S. Dawson, R.K. Ellis, Nucl. Phys. B 327, 49 (1989) [Erratum-ibid. 335, 260 (1990)]

    Article  ADS  Google Scholar 

  49. G. ’t Hooft, M.J.G. Veltman, Nucl. Phys. B 44, 189 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  50. P. Breitenlohner, D. Maison, Commun. Math. Phys. 52, 11 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  51. R. Mertig, W.L. van Neerven, Z. Phys. C 70, 637 (1996)

    Article  Google Scholar 

  52. W. Vogelsang, Phys. Rev. D 54, 2023 (1996)

    Article  ADS  Google Scholar 

  53. W. Vogelsang, Nucl. Phys. B 475, 47 (1996)

    Article  ADS  Google Scholar 

  54. V.G. Kartvelishvili, A.K. Likhoded, V.A. Petrov, Phys. Lett. B 78, 615 (1978)

    Article  ADS  Google Scholar 

  55. J. Baines et al., summary report of the “Heavy Quarks Working Group” for the “HERA-LHC Workshop” proceedings, arXiv:hep-ph/0601164 and references therein

  56. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky, W.K. Tung, J. High Energy Phys. 0207, 012 (2002)

    Article  ADS  Google Scholar 

  57. M. Glück, E. Reya, M. Stratmann, W. Vogelsang, Phys. Rev. D 63, 094005 (2001)

    Article  ADS  Google Scholar 

  58. M. Glück, W. Vogelsang, Z. Phys. C 55, 353 (1992)

    Article  ADS  Google Scholar 

  59. M. Glück, W. Vogelsang, Z. Phys. C 57, 309 (1993)

    Article  ADS  Google Scholar 

  60. M. Glück, M. Stratmann, W. Vogelsang, Phys. Lett. B 337, 373 (1994)

    Article  ADS  Google Scholar 

  61. M. Stratmann, W. Vogelsang, Phys. Lett. B 386, 370 (1996)

    Article  ADS  Google Scholar 

  62. M. Glück, E. Reya, A. Vogt, Phys. Rev. D 46, 1973 (1992)

    Article  ADS  Google Scholar 

  63. C.F. von Weizsacker, Z. Phys. 88, 612 (1934)

    Article  ADS  Google Scholar 

  64. E.J. Williams, Phys. Rev. 45, 729 (1934)

    Article  ADS  Google Scholar 

  65. S. Frixione, M.L. Mangano, P. Nason, G. Ridolfi, Phys. Lett. B 319, 339 (1993)

    Article  ADS  Google Scholar 

  66. V.M. Budnev, I.F. Ginzburg, G.V. Meledin, V.G. Serbo, Phys. Rep. 15, 181 (1975)

    Article  ADS  Google Scholar 

  67. H.A. Olsen, Phys. Rev. D 19, 100 (1979)

    Article  ADS  Google Scholar 

  68. D. de Florian, S. Frixione, Phys. Lett. B 457, 236 (1999)

    Article  ADS  Google Scholar 

  69. M. Gluck, E. Reya, M. Stratmann, Phys. Rev. D 54, 5515 (1996)

    Article  ADS  Google Scholar 

  70. A.D. Watson, Z. Phys. C 12, 123 (1982)

    Article  ADS  Google Scholar 

  71. S. Frixione, G. Ridolfi, Nucl. Phys. B 507, 315 (1997)

    Article  ADS  Google Scholar 

  72. M. Cacciari, M. Greco, Z. Phys. C 69, 459 (1996)

    Article  Google Scholar 

  73. M. Cacciari, S. Frixione, P. Nason, J. High Energy Phys. 0103, 006 (2001)

    Article  ADS  Google Scholar 

  74. B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Eur. Phys. J. C 62, 365 (2009)

    Article  ADS  Google Scholar 

  75. D. de Florian, W. Vogelsang, F. Wagner, Phys. Rev. D 76, 094021 (2007)

    Article  ADS  Google Scholar 

  76. C. Adolph et al. (COMPASS Collaboration), arXiv:1211.6849

Download references

Acknowledgements

J.R. was supported by a grant of the “Cusanuswerk”, Bonn, Germany. M.S. acknowledges support by the U.S. Department of Energy (DOE) under contract No. DE-AC02-98CH10886 and, in part, by a BNL “Laboratory Directed Research and Development Program” (LDRD 12-034). This work was supported in part by the “Bundesministerium für Bildung und Forschung”, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Stratmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riedl, J., Stratmann, M. & Schäfer, A. Longitudinally polarized photoproduction of heavy flavors at next-to-leading order of QCD. Eur. Phys. J. C 73, 2360 (2013). https://doi.org/10.1140/epjc/s10052-013-2360-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2360-7

Keywords

Navigation