Skip to main content
Log in

A global fit study on the new agegraphic dark energy model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We perform a global fit study on the new agegraphic dark energy (NADE) model in a non-flat universe by using the MCMC method with the full CMB power spectra data from the WMAP 7-yr observations, the SNIa data from Union2.1 sample, BAO data from SDSS DR7 and WiggleZ Dark Energy Survey, and the latest measurements of H 0 from HST. We find that the value of Ω k0 is greater than 0 at least at the 3σ confidence levels (CLs), which implies that the NADE model distinctly favors an open universe. Besides, our results show that the value of the key parameter of NADE model, \(n=2.673^{+0.053+0.127+0.199}_{-0.077-0.151-0.222}\), at the 1–3σ CLs, where its best-fit value is significantly smaller than those obtained in previous works. We find that the reason leading to such a change comes from the different SNIa samples used. Our further test indicates that there is a distinct tension between the Union2 sample of SNIa and other observations, and the tension will be relieved once the Union2 sample is replaced by the Union2.1 sample. So, the new constraint result of the NADE model obtained in this work is more reasonable than before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A.G. Riess et al. (Supernova Search Team Collaboration), Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al. (Supernova Cosmology Project Collaboration), Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. V. Sahni, A.A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000)

    ADS  Google Scholar 

  5. S.M. Carroll, Living Rev. Relativ. 4, 1 (2001)

    ADS  Google Scholar 

  6. T. Padmanabhan, Phys. Rep. 380, 235 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. J. Frieman, M. Turner, D. Huterer, Annu. Rev. Astron. Astrophys. 46, 385 (2008)

    Article  ADS  Google Scholar 

  10. M. Li, X.D. Li, S. Wang, Y. Wang, Commun. Theor. Phys. 56, 525 (2011)

    Article  ADS  MATH  Google Scholar 

  11. M. Li, Phys. Lett. B 603, 1 (2004)

    Article  ADS  Google Scholar 

  12. X. Zhang, Int. J. Mod. Phys. D 14, 1597 (2005)

    Article  ADS  MATH  Google Scholar 

  13. B. Chen, M. Li, Y. Wang, Nucl. Phys. B 774, 256 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. X. Zhang, Phys. Lett. B 648, 1 (2007)

    Article  ADS  Google Scholar 

  15. X. Zhang, Phys. Rev. D 74, 103505 (2006)

    Article  ADS  Google Scholar 

  16. C. Gao, F. Wu, X. Chen, Y.G. Shen, Phys. Rev. D 79, 043511 (2009)

    Article  ADS  Google Scholar 

  17. J. Zhang, X. Zhang, H. Liu, Eur. Phys. J. C 52, 693 (2007)

    Article  ADS  MATH  Google Scholar 

  18. X. Zhang, Phys. Lett. B 683, 81 (2010)

    Article  ADS  Google Scholar 

  19. M. Li, R.X. Miao, arXiv:1210.0966 [hep-th]

  20. X. Zhang, F.Q. Wu, Phys. Rev. D 72, 043524 (2005)

    Article  ADS  Google Scholar 

  21. X. Zhang, F.Q. Wu, Phys. Rev. D 76, 023502 (2007)

    Article  ADS  Google Scholar 

  22. Q.G. Huang, Y.G. Gong, J. Cosmol. Astropart. Phys. 0408, 006 (2004)

    Article  ADS  Google Scholar 

  23. Z. Chang, F.Q. Wu, X. Zhang, Phys. Lett. B 633, 14 (2006)

    Article  ADS  Google Scholar 

  24. J.Y. Shen, B. Wang, E. Abdalla, R.K. Su, Phys. Lett. B 609, 200 (2005)

    Article  ADS  Google Scholar 

  25. Z.L. Yi, T.J. Zhang, Mod. Phys. Lett. A 22, 41 (2007)

    Article  ADS  Google Scholar 

  26. X. Zhang, Phys. Rev. D 79, 103509 (2009)

    Article  ADS  Google Scholar 

  27. M. Li, X.D. Li, S. Wang, Y. Wang, X. Zhang, J. Cosmol. Astropart. Phys. 0912, 014 (2009)

    Article  ADS  Google Scholar 

  28. Z. Zhang, S. Li, X.D. Li, X. Zhang, M. Li, J. Cosmol. Astropart. Phys. 1206, 009 (2012)

    Article  ADS  Google Scholar 

  29. H. Wei, R.G. Cai, Phys. Lett. B 660, 113 (2008)

    Article  ADS  Google Scholar 

  30. Y.H. Li, J.F. Zhang, X. Zhang. Chin. Phys. B, in press. arXiv:1201.5446 [gr-qc]

  31. S. Wang, Y.H. Li, X.D. Li, X. Zhang, arXiv:1207.6679 [astro-ph.CO]

  32. H. Wei, R.G. Cai, Phys. Lett. B 663, 1 (2008)

    Article  ADS  Google Scholar 

  33. E. Komatsu et al. (WMAP Collaboration), Astrophys. J. Suppl. 192, 18 (2011)

    Article  ADS  Google Scholar 

  34. A. Lewis, S. Bridle, Phys. Rev. D 66, 103511 (2002)

    Article  ADS  Google Scholar 

  35. C.P. Ma, E. Bertschinger, Astrophys. J. 455, 7 (1995)

    Article  ADS  Google Scholar 

  36. J.c. Hwang, H.r. Noh, Phys. Rev. D 65, 023512 (2002)

    Article  ADS  Google Scholar 

  37. M. Li, C. Lin, Y. Wang, J. Cosmol. Astropart. Phys. 0805, 023 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  38. L. Xu, Phys. Rev. D 85, 123505 (2012)

    Article  ADS  Google Scholar 

  39. C. Gordon, W. Hu, Phys. Rev. D 70, 083003 (2004)

    Article  ADS  Google Scholar 

  40. J. Valiviita, E. Majerotto, R. Maartens, J. Cosmol. Astropart. Phys. 0807, 020 (2008)

    Article  ADS  Google Scholar 

  41. H. Li, J.Q. Xia, J. Cosmol. Astropart. Phys. 1004, 026 (2010)

    Article  ADS  Google Scholar 

  42. H. Li, X. Zhang, Phys. Lett. B 713, 160 (2012)

    Article  ADS  Google Scholar 

  43. N. Suzuki, D. Rubin, C. Lidman et al., Astrophys. J. 746, 85 (2012)

    Article  ADS  Google Scholar 

  44. B.A. Reid et al. (SDSS Collaboration), Mon. Not. R. Astron. Soc. Lett. 401, 2148 (2010)

    Article  Google Scholar 

  45. C. Blake, E. Kazin, F. Beutler et al., Mon. Not. R. Astron. Soc. Lett. 418, 1707 (2011)

    Article  ADS  Google Scholar 

  46. A.G. Riess, L. Macri, S. Casertano et al., Astrophys. J. 730, 119 (2011)

    Article  ADS  Google Scholar 

  47. M. Li, X.D. Li, S. Wang, X. Zhang, J. Cosmol. Astropart. Phys. 0906, 036 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  48. M. Li, X. Li, X. Zhang, Sci. China, Phys. Mech. Astron. 53, 1631 (2010)

    Article  ADS  Google Scholar 

  49. H. Wei, J. Cosmol. Astropart. Phys. 1008, 020 (2010)

    Article  ADS  Google Scholar 

  50. Y. Li, J. Ma, J. Cui, Z. Wang, X. Zhang, Sci. China, Phys. Mech. Astron. 54, 1367 (2011)

    Article  ADS  Google Scholar 

  51. G.B. Zhao, R.G. Crittenden, L. Pogosian, X.M. Zhang, Phys. Rev. Lett. 109, 171301 (2012)

    Article  ADS  Google Scholar 

  52. J.Z. Ma, X. Zhang, Phys. Lett. B 699, 233 (2011)

    Article  ADS  Google Scholar 

  53. H. Li, X. Zhang, Phys. Lett. B 703, 119 (2011)

    Article  ADS  Google Scholar 

  54. X.D. Li, S. Wang, Q.G. Huang, X. Zhang, M. Li, Sci. China, Phys. Mech. Astron. 55, 1330 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China under Grant Nos. 10705041, 10975032, 11047112 and 11175042, and by the National Ministry of Education of China under Grant Nos. NCET-09-0276, N100505001, N090305003, and N110405011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, JF., Li, YH. & Zhang, X. A global fit study on the new agegraphic dark energy model. Eur. Phys. J. C 73, 2280 (2013). https://doi.org/10.1140/epjc/s10052-013-2280-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2280-6

Keywords

Navigation