Skip to main content
Log in

Non-vanishing U e3 under S 3 symmetry

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

This work proposes two models of neutrino masses that predict non-zero θ 13 under the non-Abelian discrete flavor symmetry \(\mathbb{S}_{3}\otimes\mathbb{Z}_{2}\). We advocate that the size of θ 13 is understood as a group theoretical consequence rather than a perturbed effect from the tri-bi-maximal mixing. So, the difference of two models is designed only in terms of the flavor symmetry, by changing the charge assignment of right-handed neutrinos. The PMNS matrix in the first model is obtained from both mass matrices, charged leptons giving rise to non-zero \(\theta^{l}_{13}\) and neutrino masses giving rise to tri-bi-maximal mixing. The physical mixing angles are expressed by a simple relation between \(\theta^{l}_{13}\) and tri-bi-maximal angles to fit the recent experimental results. The other model generates PMNS matrix with non-zero θ 13, only from the neutrino mass transformation. The 5-dimensional effective theory of Majorana neutrinos obtained in this framework is tested with phenomenological bounds in the parametric spaces sinθ 23,sinθ 12 and m 2/m 3 vs. sinθ 13.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. K. Abe et al. (T2K Collaboration), Phys. Rev. Lett. 107, 041801 (2011)

    Article  ADS  Google Scholar 

  2. P. Adamson et al. (MINOS Collaboration), Phys. Rev. Lett. 107, 181802 (2011)

    Article  ADS  Google Scholar 

  3. Y. Abe et al. (DOUBLE-CHOOZ Collaboration), Phys. Rev. Lett. 108, 131801 (2012)

    Article  ADS  Google Scholar 

  4. F.P. An et al. (DAYA-BAY Collaboration), Phys. Rev. Lett. 108, 171803 (2012)

    Article  ADS  Google Scholar 

  5. J.K. Ahn et al. (RENO Collaboration), Phys. Rev. Lett. 108, 191802 (2012)

    Article  ADS  Google Scholar 

  6. K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  7. M.C. Gonzalez-Garcia, M. Maltoni, Phys. Rep. 460, 1 (2008)

    Article  ADS  Google Scholar 

  8. P.F. Harrison, D.H. Perkins, W.G. Scott, Phys. Lett. B 530, 167 (2002)

    Article  ADS  Google Scholar 

  9. P.F. Harrison, W.G. Scott, Phys. Lett. B 557, 76 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  10. A. Zee, Phys. Lett. B 630, 58 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  11. E. Ma, Phys. Rev. D 72, 037301 (2005)

    Article  ADS  Google Scholar 

  12. K.S. Babu, X.G. He, arXiv:hep-ph/0507217

  13. E. Ma, Mod. Phys. Lett. A 20, 2601 (2005)

    Article  ADS  Google Scholar 

  14. G. Altarelli, F. Feruglio, Nucl. Phys. B 741, 215 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. X.G. He, Y.Y. Keum, R.R. Volkas, J. High Energy Phys. 0604, 039 (2006)

    Article  ADS  Google Scholar 

  16. X.G. He, A. Zee, Phys. Lett. B 645, 427 (2007)

    Article  ADS  Google Scholar 

  17. R.R. Volkas, arXiv:hep-ph/0612296

  18. F. Feruglio, C. Hagedorn, Y. Lin, L. Merlo, Nucl. Phys. B 775, 120 (2007) [Erratum-ibid. 836, 127 (2010)]

    Article  ADS  Google Scholar 

  19. W. Grimus, L. Lavoura, P.O. Ludl, J. Phys. G 36, 115007 (2009)

    Article  ADS  Google Scholar 

  20. T. Araki, J. Mei, Z.z. Xing, Phys. Lett. B 695, 165 (2011)

    Article  ADS  Google Scholar 

  21. N. Haba, A. Watanabe, K. Yoshioka, Phys. Rev. Lett. 97, 041601 (2006)

    Article  ADS  Google Scholar 

  22. C.S. Lam, Phys. Rev. Lett. 101, 121602 (2008)

    Article  ADS  Google Scholar 

  23. C. Hagedorn, M. Lindner, R.N. Mohapatra, J. High Energy Phys. 0606, 042 (2006)

    Article  ADS  Google Scholar 

  24. H. Zhang, Phys. Lett. B 655, 132 (2007)

    Article  ADS  Google Scholar 

  25. F. Bazzocchi, L. Merlo, S. Morisi, Nucl. Phys. B 816, 204 (2009)

    Article  ADS  MATH  Google Scholar 

  26. F. Bazzocchi, L. Merlo, S. Morisi, Phys. Rev. D 80, 053003 (2009)

    Article  ADS  Google Scholar 

  27. R.Z. Yang, H. Zhang, Phys. Lett. B 700, 316 (2011)

    Article  ADS  Google Scholar 

  28. S. Morisi, E. Peinado, Phys. Lett. B 701, 451 (2011)

    Article  ADS  Google Scholar 

  29. N.W. Park, K.H. Nam, K. Siyeon, Phys. Rev. D 83, 056013 (2011)

    Article  ADS  Google Scholar 

  30. S. Morisi, K.M. Patel, E. Peinado, Phys. Rev. D 84, 053002 (2011)

    Article  ADS  Google Scholar 

  31. D. Meloni, S. Morisi, E. Peinado, J. Phys. G 38, 015003 (2011)

    Article  ADS  Google Scholar 

  32. P.V. Dong, H.N. Long, C.H. Nam, V.V. Vien, Phys. Rev. D 85, 053001 (2012)

    Article  ADS  Google Scholar 

  33. X. Chu, M. Dhen, T. Hambye, J. High Energy Phys. 1111, 106 (2011)

    Article  ADS  Google Scholar 

  34. E. Ma, arXiv:hep-ph/0409075

  35. S.L. Chen, M. Frigerio, E. Ma, Phys. Rev. D 70, 073008 (2004) [Erratum-ibid. D 70, 079905 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research program through NRF (2011-0014686).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Siyeon.

Appendix: Higgs Potential

Appendix: Higgs Potential

The contents of Higgs scalar particles and their representations under \(\mathbb{S}_{3}\otimes\mathbb{Z}_{2}\) are

(39)

which commonly belong to (2,1/2) G under SU(2)×U(1) gauge group. The full invariant Higgs potential can be organized into three parts as follows:

(40)

where V e and V o are the interactions of only ℤ2-even particles and those of only ℤ2-odd particles, respectively, while V χ is the cross interactions of ℤ2-even and ℤ2-odd particles. Each contribution to the potential V is given as;

(41)
(42)
(43)

The subscript ‘1’ or ‘2’ in each term indicates that the product of two fields belongs to the representation 1 or 2 in \(\mathbb{S}_{3}\). Each term with a subscript ‘r’ consists of three types of product, 1,1′ and 2 representations as in Eq. (9).

According to the product rules in Eqs. (1)–(3), \((\varPhi^{\dagger}\varPhi)_{1}=|\varphi_{1}|^{2}+|\varphi_{2}|^{2}, (\varPhi^{\dagger}\varPhi )_{1'}=\varphi_{1}^{*}\varphi_{2}-\varphi_{2}^{*}\varphi_{1}\), and \((\varPhi^{\dagger}\varPhi)_{2}=(|\varphi_{2}|^{2}-|\varphi_{1}|^{2} \varphi_{1}^{*}\varphi_{2}+\varphi_{2}^{*}\varphi_{1})^{T}\). The Higgs potential in Eq. (41) can be rephrased in terms of component fields \(\{\varphi_{i}, \varphi_{i}^{\dagger}\}\) with i=1 and 2, and {H,H }:

(44)

When the Higgs particles obtain their real vacuum expectation values such that 〈H〉=〈H 〉=v, 〈φ 1〉=v 1, and 〈φ 2〉=v 2, the potential can be expressed as follows:

(45)

where Λ a =λ a +λ c , and Λ b =λ+λ′+2λ″.

Following the same steps as in Eqs. (41)–(45), the potentials, V o and V χ , in terms of vevs, 〈h〉=u and (〈σ 1〉,〈σ 2〉)=(w 1,w 2), can be expressed as follows:

(46)

where \(\varLambda_{c} \equiv\lambda_{s}+\lambda_{s}'+2\lambda_{s}''\).

(47)

where k 1=χ+χ′+2χ″, \(k_{2}=\lambda_{\chi}+\lambda_{\chi}'+2\lambda_{\chi}''\), \(k_{3}=\eta_{\chi}+\eta_{\chi}'+2\eta_{\chi}''\), and k 4=2(γ+γ′). The \(k_{5}\ldots k_{5}'''\) are rather complicated polynomials of \(\varGamma_{\chi},\varGamma'_{\chi}\), and Γ χ in Eq. (43), such that \(k_{5}=k_{5}(\varGamma_{\chi}, \varGamma'_{\chi})\), \(k_{5}'=k_{5}'(\varGamma_{\chi}, \varGamma''_{\chi})\), \(k_{5}''=k_{5}''(\varGamma_{\chi})\), and \(k_{5}'''=k_{5}'''(\varGamma'_{\chi})\). Their details are not necessary for the following examination of the minimal condition. The first derivatives of the full potential given in Eq. (40) are

(48)

where each K denotes the part that corresponds to the coefficients of linear terms. The vevs, v 1≠0 and v 2=0, can make the potential minimum, when the following conditions are satisfied:

(49)
(50)

It is clear that any of w 1 and w 2 should not be zero to satisfy the above conditions. According to the symmetry of the potential under the interchange of σ 1 and σ 2, vevs can be taken as w 1=w 2=w. Thus, in summary, the following vevs of the fields in Eq. (39) can be adopted for the masses of leptons:

(51)

Then, the derivatives in Eqs. (48) reduce to the following conditions:

(52)

According to Eqs. (49) and (50), k 4<0 and k 5>0 are necessary. The mass matrices are examined upon the assumptions of 0.0001<u/w<5 and v/v 1<1 with weak hierarchy. The assumptions do not show any conflicts with either the minimum conditions in Eq. (52) or the phenomenological constraints, \(\mathcal{O}(m_{h}^{2}, m_{\varphi}^{2}, m_{s}^{2})>m_{H}^{2}\), since the constraints on masses and vevs contain a sufficient number of independent parameters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siyeon, K. Non-vanishing U e3 under S 3 symmetry. Eur. Phys. J. C 72, 2081 (2012). https://doi.org/10.1140/epjc/s10052-012-2081-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2081-3

Keywords

Navigation