Skip to main content
Log in

Gluino decays in the complex MSSM: a full one-loop analysis

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We evaluate all two-body decay modes of the gluino, in the Minimal Supersymmetric Standard Model with complex parameters (cMSSM). This constitutes an important step in the cascade decays of SUSY particles at the LHC. The evaluation is based on a full one-loop calculation of all two-body decay channels, also including hard QED and QCD radiation. The dependence of the gluino decay to a scalar quark and a quark on the relevant cMSSM parameters is analyzed numerically. We find sizable contributions to the decay widths and branching ratios. They are, roughly of \(\mathcal{O}({\pm 5\%)}\), but can go up to ±10% or higher, where the pure SUSY QCD contributions alone can give an insufficient approximation to the full one-loop result. Therefore the full corrections are important for the correct interpretation of gluino decays at the LHC. The results will be implemented into the Fortran code FeynHiggs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.P. Nilles, Phys. Rep. 110, 1 (1984)

    Article  ADS  Google Scholar 

  2. H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985)

    Article  ADS  Google Scholar 

  3. R. Barbieri, Riv. Nuovo Cimento 11, 1 (1988)

    Google Scholar 

  4. G. Aad et al. (The ATLAS Collaboration), arXiv:0901.0512

  5. G. Bayatian et al. (CMS Collaboration), J. Phys. G 34, 995 (2007)

    Article  ADS  Google Scholar 

  6. O. Buchmueller et al., Eur. Phys. J. C 64, 391 (2009). arXiv:0907.5568 [hep-ph]

    Article  ADS  Google Scholar 

  7. W. Beenakker, R. Höpker, P. Zerwas, Phys. Lett. B 378, 159 (1996). arXiv:hep-ph/9602378

    Article  ADS  Google Scholar 

  8. M. Mühlleitner, A. Djouadi, Y. Mambrini, Comput. Phys. Commun. 168, 46 (2005). arXiv:hep-ph/0311167

    Article  ADS  Google Scholar 

  9. S. Choi, M. Drees, A. Freitas, P. Zerwas, Phys. Rev. D 78, 095007 (2008). arXiv:0808.2410 [hep-ph]

    Article  ADS  Google Scholar 

  10. M. Krämer, E. Popenda, M. Spira, P. Zerwas, Phys. Rev. D 80, 055002 (2009). arXiv:0902.3795 [hep-ph]

    Article  ADS  Google Scholar 

  11. A. De Roeck et al., Eur. Phys. J. C 66, 525 (2010). arXiv:0909.3240 [hep-ph]

    Article  ADS  Google Scholar 

  12. S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76 (2000). arXiv:hep-ph/9812320, see www.feynhiggs.de

    Article  ADS  MATH  Google Scholar 

  13. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343 (1999). arXiv:hep-ph/9812472

    ADS  Google Scholar 

  14. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133 (2003). arXiv:hep-ph/0212020

    Article  ADS  Google Scholar 

  15. M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, R. Rzehak, G. Weiglein, J. High Energy Phys. 02, 047 (2007). arXiv:hep-ph/0611326

    Article  ADS  Google Scholar 

  16. T. Fritzsche, PhD Thesis (Cuvillier Verlag, Göttingen, 2005). ISBN:3-86537-577-4

    Google Scholar 

  17. S. Heinemeyer, H. Rzehak, C. Schappacher, Phys. Rev. D 82, 075010 (2010). arXiv:1007.0689 [hep-ph]

    Article  ADS  Google Scholar 

  18. S. Heinemeyer, H. Rzehak, C. Schappacher, PoS C CHARGED2010, 039 (2010). arXiv:1012.4572 [hep-ph]

    Google Scholar 

  19. T. Fritzsche, S. Heinemeyer, H. Rzehak, C. Schappacher, arXiv:1111.7289 [hep-ph]

  20. A. Fowler, G. Weiglein, J. High Energy Phys. 1001, 108 (2010). arXiv:0909.5165 [hep-ph]

    Article  ADS  Google Scholar 

  21. A. Denner, Fortschr. Phys. 41, 307 (1993). arXiv:0709.1075 [hep-ph]

    Google Scholar 

  22. K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  23. K. Chetyrkin, J. Kühn, M. Steinhauser, Comput. Phys. Commun. 133, 43 (2000). arXiv:hep-ph/0004189

    Article  ADS  MATH  Google Scholar 

  24. R. Hempfling, Phys. Rev. D 49, 6168 (1994)

    Article  ADS  Google Scholar 

  25. L. Hall, R. Rattazzi, U. Sarid, Phys. Rev. D 50, 7048 (1994). arXiv:hep-ph/9306309

    Article  ADS  Google Scholar 

  26. M. Carena, M. Olechowski, S. Pokorski, C. Wagner, Nucl. Phys. B 426, 269 (1994). arXiv:hep-ph/9402253

    Article  ADS  Google Scholar 

  27. M. Carena, D. Garcia, U. Nierste, C. Wagner, Nucl. Phys. B 577, 577 (2000). arXiv:hep-ph/9912516

    Article  Google Scholar 

  28. R. Harlander, L. Mihaila, M. Steinhauser, Phys. Rev. D 72, 095009 (2005). arXiv:hep-ph/0509048

    Article  ADS  Google Scholar 

  29. R. Peccei, H. Quinn, Phys. Rev. Lett. 38, 1440 (1977)

    Article  ADS  Google Scholar 

  30. R. Peccei, H. Quinn, Phys. Rev. D 16, 1791 (1977)

    Article  ADS  Google Scholar 

  31. S. Dimopoulos, S. Thomas, Nucl. Phys. B 465, 23 (1996). arXiv:hep-ph/9510220

    Article  ADS  Google Scholar 

  32. J. Küblbeck, M. Böhm, A. Denner, Comput. Phys. Commun. 60, 165 (1990)

    Article  ADS  Google Scholar 

  33. T. Hahn, Comput. Phys. Commun. 140, 418 (2001). arXiv:hep-ph/0012260

    Article  ADS  MATH  Google Scholar 

  34. T. Hahn, C. Schappacher, Comput. Phys. Commun. 143, 54 (2002). arXiv:hep-ph/0105349

    Article  ADS  MATH  Google Scholar 

  35. The program, the user’s guide and the MSSM model files are available via www.feynarts.de

  36. S. Heinemeyer, F.v.d. Pahlen, C. Schappacher, arXiv:1112.0760 [hep-ph]

  37. T. Hahn, M. Pérez-Victoria, Comput. Phys. Commun. 118, 153 (1999). arXiv:hep-ph/9807565

    Article  ADS  Google Scholar 

  38. F. del Aguila, A. Culatti, R. Munoz Tapia, M. Perez-Victoria, Nucl. Phys. B 537, 561 (1999). arXiv:hep-ph/9806451

    Article  ADS  MATH  Google Scholar 

  39. W. Siegel, Phys. Lett. B 84, 193 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  40. D. Capper, D. Jones, P. van Nieuwenhuizen, Nucl. Phys. B 167, 479 (1980)

    Article  ADS  Google Scholar 

  41. D. Stöckinger, J. High Energy Phys. 0503, 076 (2005). arXiv:hep-ph/0503129

    Article  ADS  Google Scholar 

  42. W. Hollik, D. Stöckinger, Phys. Lett. B 634, 63 (2006). arXiv:hep-ph/0509298

    Article  ADS  Google Scholar 

  43. The couplings can be found in the files MSSM.ps.gz and MSSMQCD.ps.gz as part of the FeynArts package [32, 33, 34, 35]

  44. LEP Higgs working group, Phys. Lett. B 565, 61 (2003). arXiv:hep-ex/0306033

    Article  ADS  Google Scholar 

  45. LEP Higgs working group, Eur. Phys. J. C 47, 547 (2006). arXiv:hep-ex/0602042

    Article  ADS  Google Scholar 

  46. V. Khachatryan et al. (CMS Collaboration), arXiv:1101.1628 [hep-ex]

  47. http://cdsweb.cern.ch/record/1342547/files/SUS-11-001-pas.pdf

  48. http://cdsweb.cern.ch/record/1343076/files/SUS-10-005-pas.pdf

  49. G. Aad et al. (ATLAS Collaboration), arXiv:1102.2357 [hep-ex], arXiv:1102.5290 [hep-ex]

  50. J. Frere, D. Jones, S. Raby, Nucl. Phys. B 222, 11 (1983)

    Article  ADS  Google Scholar 

  51. M. Claudson, L. Hall, I. Hinchliffe, Nucl. Phys. B 228, 501 (1983)

    Article  ADS  Google Scholar 

  52. C. Kounnas, A. Lahanas, D. Nanopoulos, M. Quiros, Nucl. Phys. B 236, 438 (1984)

    Article  ADS  Google Scholar 

  53. J. Gunion, H. Haber, M. Sher, Nucl. Phys. B 306, 1 (1988)

    Article  ADS  Google Scholar 

  54. J. Casas, A. Lleyda, C. Munoz, Nucl. Phys. B 471, 3 (1996). arXiv:hep-ph/9507294

    Article  ADS  Google Scholar 

  55. P. Langacker, N. Polonsky, Phys. Rev. D 50, 2199 (1994). arXiv:hep-ph/9403306

    Article  ADS  Google Scholar 

  56. A. Strumia, Nucl. Phys. B 482, 24 (1996). arXiv:hep-ph/9604417

    Article  ADS  Google Scholar 

  57. M. Dugan, B. Grinstein, L. Hall, Nucl. Phys. B 255, 413 (1985)

    Article  ADS  Google Scholar 

  58. W. Hollik, J. Illana, S. Rigolin, D. Stöckinger, Phys. Lett. B 416, 345 (1998). arXiv:hep-ph/9707437

    Article  ADS  Google Scholar 

  59. W. Hollik, J. Illana, S. Rigolin, D. Stöckinger, Phys. Lett. B 425, 322 (1998). arXiv:hep-ph/9711322

    Article  ADS  Google Scholar 

  60. D. Demir, O. Lebedev, K. Olive, M. Pospelov, A. Ritz, Nucl. Phys. B 680, 339 (2004). arXiv:hep-ph/0311314

    Article  ADS  Google Scholar 

  61. D. Chang, W. Keung, A. Pilaftsis, Phys. Rev. Lett. 82, 900 (1999). arXiv:hep-ph/9811202. [Erratum-ibid. 83, 3972 (1999)]

    Article  ADS  Google Scholar 

  62. A. Pilaftsis, Phys. Lett. B 471, 174 (1999). arXiv:hep-ph/9909485

    Article  ADS  Google Scholar 

  63. O. Lebedev, K. Olive, M. Pospelov, A. Ritz, Phys. Rev. D 70, 016003 (2004). arXiv:hep-ph/0402023

    Article  ADS  Google Scholar 

  64. S. Abel, S. Khalil, O. Lebedev, Nucl. Phys. B 606, 151 (2001). arXiv:hep-ph/0103320

    Article  ADS  Google Scholar 

  65. Y. Li, S. Profumo, M. Ramsey-Musolf, J. High Energy Phys. 1008, 062 (2010). arXiv:1006.1440 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Heinemeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinemeyer, S., Schappacher, C. Gluino decays in the complex MSSM: a full one-loop analysis. Eur. Phys. J. C 72, 1905 (2012). https://doi.org/10.1140/epjc/s10052-012-1905-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-1905-5

Keywords

Navigation