Skip to main content

Advertisement

Log in

Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The inclusive Higgs production cross section from gluon fusion is calculated through NNLO QCD, including its top quark mass dependence. This is achieved through a matching of the 1/M t expansion of the partonic cross sections to the exact large-\(\hat{s}\) limits which are derived from k T -factorization. The accuracy of this procedure is estimated to be better than 1% for the hadronic cross section. The final result is shown to be within 1% of the commonly used effective theory approach, thus confirming earlier findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Djouadi, The anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model. Phys. Rep. 457, 1 (2008). hep-ph/0503172

    Article  ADS  Google Scholar 

  2. A. Djouadi, The anatomy of electro-weak symmetry breaking. II: The Higgs bosons in the minimal supersymmetric model. Phys. Rep. 459, 1 (2008). hep-ph/0503173

    Article  ADS  Google Scholar 

  3. S. Dawson, Radiative corrections to Higgs boson production. Nucl. Phys. B 359, 283 (1991)

    Article  ADS  Google Scholar 

  4. D. Graudenz, M. Spira, P.M. Zerwas, QCD corrections to Higgs boson production at proton-proton colliders. Phys. Rev. Lett. 70, 1372 (1993)

    Article  ADS  Google Scholar 

  5. M. Spira, A. Djouadi, D. Graudenz, P.M. Zerwas, Higgs boson production at the LHC. Nucl. Phys. B 453, 17 (1995). hep-ph/9504378

    Article  ADS  Google Scholar 

  6. Y. Schröder, M. Steinhauser, Four-loop decoupling relations for the strong coupling. J. High Energy Phys. 0601, 051 (2006). hep-ph/0512058

    Article  ADS  Google Scholar 

  7. K.G. Chetyrkin, J.H. Kühn, C. Sturm, QCD decoupling at four loops. Nucl. Phys. B 744, 121 (2006). hep-ph/0512060

    Article  MATH  ADS  Google Scholar 

  8. M. Spira, HIGLU: a program for the calculation of the total Higgs production cross section at hadron colliders via gluon fusion including QCD corrections. hep-ph/9510347

  9. R.V. Harlander, W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders. Phys. Rev. Lett. 88, 201801 (2002). hep-ph/0201206

    Article  ADS  Google Scholar 

  10. C. Anastasiou, K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD. Nucl. Phys. B 646, 220 (2002). hep-ph/0207004

    Article  ADS  Google Scholar 

  11. V. Ravindran, J. Smith, W.L. van Neerven, NNLO corrections to the total cross section for Higgs boson production in hadron–hadron collisions. Nucl. Phys. B 665, 325 (2003). hep-ph/0302135

    Article  ADS  Google Scholar 

  12. R. Harlander, Higgs production at the large hadron collider: theoretical status. J. Phys. G 35, 033001 (2008)

    Article  ADS  Google Scholar 

  13. R.V. Harlander, K.J. Ozeren, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order. J. High Energy Phys. 0911, 088 (2009). arXiv:0909.3420

    Article  ADS  Google Scholar 

  14. R.V. Harlander, K.J. Ozeren, Top mass effects in Higgs production at next-to-next-to-leading order QCD: virtual corrections. Phys. Lett. B 679, 467 (2009). arXiv:0907.2997

    Article  ADS  Google Scholar 

  15. A. Pak, M. Rogal, M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC. arXiv:0911.4662

  16. A. Pak, M. Rogal, M. Steinhauser, Virtual three-loop corrections to Higgs boson production in gluon fusion for finite top quark mass. Phys. Lett. B 679, 473 (2009). arXiv:0907.2998

    Article  ADS  Google Scholar 

  17. S. Marzani, R.D. Ball, V. Del Duca, S. Forte, A. Vicini, Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order. Nucl. Phys. B 800, 127 (2008). arXiv:0801.2544

    Article  MATH  ADS  Google Scholar 

  18. R. Harlander, P. Kant, Higgs production and decay: analytic results at next-to-leading order QCD. J. High Energy Phys. 0512, 015 (2005). hep-ph/0509189

    Article  ADS  Google Scholar 

  19. C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo, Z. Kunszt, Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop. J. High Energy Phys. 0701, 082 (2007). hep-ph/0611236

    Article  ADS  Google Scholar 

  20. U. Aglietti, R. Bonciani, G. Degrassi, A. Vicini, Analytic results for virtual QCD corrections to Higgs production and decay. J. High Energy Phys. 0701, 021 (2007). hep-ph/0611266

    Article  ADS  Google Scholar 

  21. S. Catani, M. Ciafaloni, F. Hautmann, High-energy factorization and small x heavy flavor production. Nucl. Phys. B 366, 135 (1991)

    Article  ADS  Google Scholar 

  22. R.D. Ball, R.K. Ellis, Heavy quark production at high energy. Comput. Phys. Commun. 0105, 053 (2001). hep-ph/0101199

    Google Scholar 

  23. G. Camici, M. Ciafaloni, k-factorization and small-x anomalous dimensions. Nucl. Phys. B 496, 305 (1997)

    Article  ADS  Google Scholar 

  24. G. Camici, M. Ciafaloni, k-factorization and small-x anomalous dimensions. Nucl. Phys. B 607, 431 (2001)

    Article  ADS  Google Scholar 

  25. S. Catani, F. Hautmann, High-energy factorization and small x deep inelastic scattering beyond leading order. Nucl. Phys. B 427, 475 (1994)

    Article  ADS  Google Scholar 

  26. S. Marzani, R.D. Ball, High energy resummation of Drell–Yan processes. Nucl. Phys. B 814, 246 (2009). arXiv:0812.3602

    Article  ADS  Google Scholar 

  27. G. Diana, High-energy resummation in direct photon production. Nucl. Phys. B 824, 154 (2010). arXiv:0906.4159

    Article  ADS  Google Scholar 

  28. F. Hautmann, Heavy top limit and double-logarithmic contributions to Higgs production at \(m_{H}^{2}/s\ll1\). Phys. Lett. B 535, 159 (2002). hep-ph/0203140

    Article  ADS  Google Scholar 

  29. S. Marzani, R.D. Ball, V. Del Duca, S. Forte, A. Vicini, Finite-top-mass effects in NNLO Higgs production. Nucl. Phys. Proc. Suppl. 186, 98 (2009). arXiv:0809.4934

    Article  ADS  Google Scholar 

  30. R. Kirschner, M. Segond, Small x resummation in collinear factorisation. arXiv:0910.5443

  31. R.K. Ellis, G. Zanderighi, Scalar one-loop integrals for QCD. J. High Energy Phys. 0802, 002 (2008). arXiv:0712.1851

    Article  ADS  Google Scholar 

  32. The TEVNPH Working Group, Combined CDF and D0 upper limits on standard model Higgs boson production with 2.1–5.4 fb−1 of data. FERMILAB-CONF-09-557-E, CDF Note 9998, D0 Note 5983

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert V. Harlander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harlander, R.V., Mantler, H., Marzani, S. et al. Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass. Eur. Phys. J. C 66, 359–372 (2010). https://doi.org/10.1140/epjc/s10052-010-1258-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1258-x

Keywords

Navigation