Skip to main content
Log in

The light stop window

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We show that a right-handed stop in the 200–400 GeV mass range, together with a nearly degenerate neutralino and, possibly, a gluino below 1.5 TeV, follows from reasonable assumptions, is consistent with present data, and offers interesting discovery prospects at the LHC. Triggering on an extra jet produced in association with stops allows the experimental search for stops even when their mass difference with neutralinos is very small and the decay products are too soft for direct observation. Using a razor analysis, we are able to set stop bounds that are stronger than those published by ATLAS and CMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. This configuration is known as the “maximal mixing” case, although it does not necessarily imply a large mixing between the two stop mass eigenstates, as discussed in Sect. 2.

  2. This ratio is evaluated using the SM estimate from Ref. [19], and a naive average of the HFAG result [20] and the latest Babar result [21] on BR(BX s γ)exp.

References

  1. ATLAS Collaboration, Phys. Lett. B 716, 1 (2012). arXiv:1207.7214

    Article  ADS  Google Scholar 

  2. CMS Collaboration, Phys. Lett. B 716, 30 (2012). arXiv:1207.7235

    Article  ADS  Google Scholar 

  3. A. Strumia, J. High Energy Phys. 1104, 073 (2011). arXiv:1101.2195, see for example

    Article  ADS  Google Scholar 

  4. R. Barbieri, D. Pappadopulo, J. High Energy Phys. 0910, 061 (2009). arXiv:0906.4546

    Article  ADS  Google Scholar 

  5. M. Papucci, J.T. Ruderman, A. Weiler, J. High Energy Phys. 1209, 035 (2012). arXiv:1110.6926

    Article  ADS  Google Scholar 

  6. C. Brust, A. Katz, S. Lawrence, R. Sundrum, J. High Energy Phys. 1203, 103 (2012). arXiv:1110.6670

    Article  ADS  Google Scholar 

  7. Z. Han, A. Katz, D. Krohn, M. Reece, J. High Energy Phys. 1208, 083 (2012). arXiv:1205.5808

    Article  ADS  Google Scholar 

  8. J.R. Espinosa, C. Grojean, V. Sanz, M. Trott, arXiv:1207.7355 [hep-ph]

  9. M. Carena, G. Nardini, M. Quiros, C.E.M. Wagner, J. High Energy Phys. 0810, 062 (2008). arXiv:0806.4297

    Article  ADS  Google Scholar 

  10. https://twiki.cern.ch/twiki/bin/view/AtlasPublic

  11. http://cms.web.cern.ch/org/cms-papers-and-results

  12. C.-L. Chou, M.E. Peskin, Phys. Rev. D 61, 055004 (2000). hep-ph/9909536

    Article  ADS  Google Scholar 

  13. G. Hiller, J.S. Kim, H. Sedello, Phys. Rev. D 80, 115016 (2009). arXiv:0910.2124 [hep-ph]

    Article  ADS  Google Scholar 

  14. D.S.M. Alves, M.R. Buckley, P.J. Fox, J.D. Lykken, C.-T. Yu, arXiv:1205.5805

  15. C. Kilic, B. Tweedie, arXiv:1211.6106

  16. The result is obtained updating the fit of P.P. Giardino, K. Kannike, M. Raidal, A. Strumia, arXiv:1207.1347

  17. M. Ciuchini, G. Degrassi, P. Gambino, G.F. Giudice, Nucl. Phys. B 534, 3 (1998). hep-ph/9806308

    Article  ADS  Google Scholar 

  18. E. Gabrielli, G.F. Giudice, Nucl. Phys. B 433, 3 (1995) [Erratum—ibid. B 507, 549 (1997)]. hep-lat/9407029

    Article  ADS  Google Scholar 

  19. M. Misiak, H.M. Asatrian, K. Bieri, M. Czakon, A. Czarnecki, T. Ewerth, A. Ferroglia, P. Gambino et al., Phys. Rev. Lett. 98, 022002 (2007). hep-ph/0609232

    Article  ADS  Google Scholar 

  20. Heavy Flavor Averaging Group Collaboration, arXiv:1207.1158

  21. BABAR Collaboration, arXiv:1207.5772

  22. A.J. Bevan et al., PoS HQL 2010 (2011) 019. http://utfit.org/UTfit

  23. M. Farina, M. Kadastik, D. Pappadopulo, J. Pata, M. Raidal, A. Strumia, Nucl. Phys. B 853, 607 (2011). arXiv:1104.3572

    Article  ADS  MATH  Google Scholar 

  24. M. Kadastik, K. Kannike, A. Racioppi, M. Raidal, J. High Energy Phys. 1205, 061 (2012). arXiv:1112.3647

    Article  ADS  Google Scholar 

  25. G. Hiller, Y. Nir, J. High Energy Phys. 0803, 046 (2008). arXiv:0802.0916

    Article  ADS  Google Scholar 

  26. CMS Collaboration, J. High Energy Phys. 1209, 094 (2012). arXiv:1206.5663

    ADS  Google Scholar 

  27. ATLAS Collaboration, arXiv:1210.4491

  28. ATLAS Collaboration, Phys. Lett. B 710, 67 (2012). arXiv:1109.6572

    Article  ADS  Google Scholar 

  29. ATLAS conference note 2012-166

  30. CMS Collaboration, arXiv:1210.8115

  31. C. Rogan, arXiv:1006.2727

  32. CMS Collaboration, arXiv:1212.6961

  33. T. Sjostrand, S. Mrenna, P.Z. Skands, Comput. Phys. Commun. 178, 852 (2008). arXiv:0710.3820

    Article  ADS  Google Scholar 

  34. M. Cacciari, G.P. Salam, G. Soyez, Eur. Phys. J. C 72, 1896 (2012). arXiv:1111.6097

    Article  ADS  Google Scholar 

  35. M. Cacciari, G.P. Salam, Phys. Lett. B 641, 57 (2006). hep-ph/0512210

    Article  ADS  Google Scholar 

  36. M. Cacciari, G.P. Salam, G. Soyez, J. High Energy Phys. 0804, 063 (2008). arXiv:0802.1189

    Article  ADS  Google Scholar 

  37. The details on how to implement the CMS razor analyses outside the CMS analysis framework are given in https://twiki.cern.ch/twiki/bin/view/CMSPublic/RazorLikelihoodHowTo

  38. CMS Collaboration, J. High Energy Phys. 1208, 110 (2012). arXiv:1205.3933

    ADS  Google Scholar 

  39. P.J. Fox, R. Harnik, R. Primulando, C.-T. Yu, Phys. Rev. D 86, 015010 (2012). arXiv:1203.1662

    Article  ADS  Google Scholar 

  40. M. Kramer, A. Kulesza, R. van der Leeuw, M. Mangano, S. Padhi, T. Plehn, X. Portell, arXiv:1206.2892

  41. Z.-H. Yu, X.J. Bi, Q.-S. Yan, arXiv:1211.2997

  42. K. Kriza, A. Kumar, D.E. Morissey, arXiv:1212.4856

  43. CMS Collaboration, CMS-PAS-SUS-11-024

Download references

Acknowledgements

A.D. was partly supported by the National Science Foundation under grants PHY-0905383-ARRA and PHY-1215979. A.S. was supported by the ESF grant MTT8 and by SF0690030s09 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gino Isidori.

Appendix

Appendix

In this appendix we derive the four-body stop decay width given in (24). In the limit of small mass difference (ΔMM W ,m t ), the amplitude for pure right-handed stop decay \(\tilde{t}_{R} \to N b e^{+}\nu\) is

(A.1)

where P i are the quadri-momenta of the particles involved. The decay width is given by

(A.2)

The 4-body phase space integral (4) can be analytically performed at leading order in \(\Delta M =m_{\tilde{t}}- M_{\mathrm{DM}}\). Indeed, by writing the decay as \(\tilde{t}\to XY\to(Ne)(b\nu)\), the amplitude for each sub-decay is separately Lorentz invariant. Thus, using

(A.3)
(A.4)

we get

(A.5)
(A.6)

where we have kept only the leading order in ΔM. From these expressions we obtain (24).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delgado, A., Giudice, G.F., Isidori, G. et al. The light stop window. Eur. Phys. J. C 73, 2370 (2013). https://doi.org/10.1140/epjc/s10052-013-2370-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2370-5

Keywords

Navigation