Skip to main content

Advertisement

Log in

Review of lattice results concerning low-energy particle physics

  • Review
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We review lattice results relevant for pion and kaon physics with the aim of making them easily accessible to the particle physics community. Specifically, we review the determination of the light-quark masses, the form factor f +(0), relevant for the semileptonic Kπ transition at zero momentum transfer as well as the ratio f K /f π of decay constants and discuss the consequences for the elements V us and V ud of the CKM matrix. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2) L ×SU(2) R and SU(3) L ×SU(3) R Chiral Perturbation Theory and review the determination of the B K parameter of neutral kaon mixing. We introduce quality criteria and use these when forming averages. Although subjective and imperfect, these criteria may help the reader to judge different aspects of current lattice computations. Our main results are summarized in Sect. 1.2, but we stress the importance of the detailed discussion that underlies these results and constitutes the bulk of the present review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

S. Aoki, Y. Aoki, … H. Wittig

References

  1. Flavianet Lattice Averaging Group (FLAG), Review of lattice results concerning low energy particle physics. http://itpwiki.unibe.ch/flag

  2. J. Laiho, E. Lunghi, R. Van de Water, 2+1 flavor lattice QCD averages. http://krone.physik.unizh.ch/~lunghi/webpage/LatAves

  3. J. Laiho, E. Lunghi, R.S. Van de Water, Lattice QCD inputs to the CKM unitarity triangle analysis. Phys. Rev. D 81, 034503 (2010). arXiv:0910.2928 [hep-ph]

    ADS  Google Scholar 

  4. K. Jansen, Lattice QCD: a critical status report. PoS LAT2008, 010 (2008). arXiv:0810.5634 [hep-lat]

    MathSciNet  Google Scholar 

  5. C. Jung, Status of dynamical ensemble generation. PoS LAT2009, 002 (2009). arXiv:1001.0941 [hep-lat]

    Google Scholar 

  6. A. Bazavov et al. (MILC 09), Full nonperturbative QCD simulations with 2+1 flavors of improved staggered quarks. Rev. Mod. Phys. 82, 1349–1417 (2010). arXiv:0903.3598 [math.PR]

    Article  ADS  Google Scholar 

  7. M. Hasenbusch, Speeding up the hybrid Monte Carlo algorithm for dynamical fermions. Phys. Lett. B 519, 177–182 (2001). hep-lat/0107019

    Article  ADS  MATH  Google Scholar 

  8. M. Lüscher, Schwarz-preconditioned HMC algorithm for two-flavour lattice QCD. Comput. Phys. Commun. 165, 199–220 (2005). hep-lat/0409106

    Article  ADS  Google Scholar 

  9. C. Urbach, K. Jansen, A. Shindler, U. Wenger, HMC algorithm with multiple time scale integration and mass preconditioning. Comput. Phys. Commun. 174, 87–98 (2006). hep-lat/0506011

    Article  ADS  Google Scholar 

  10. M.A. Clark, A.D. Kennedy, Accelerating dynamical fermion computations using the rational hybrid Monte Carlo (RHMC) algorithm with multiple pseudofermion fields. Phys. Rev. Lett. 98, 051601 (2007). hep-lat/0608015

    Article  ADS  Google Scholar 

  11. K.-I. Ishikawa, Recent algorithm and machine developments for lattice QCD. PoS LAT2008, 013 (2008). arXiv:0811.1661 [hep-lat]

    Google Scholar 

  12. D.J. Antonio et al. (RBC 07A), Localization and chiral symmetry in 3 flavor domain wall QCD. Phys. Rev. D 77, 014509 (2008). arXiv:0705.2340 [hep-lat]

    ADS  Google Scholar 

  13. A. Bazavov et al. (MILC 10), Topological susceptibility with the asqtad action. Phys. Rev. D 81, 114501 (2010). arXiv:1003.5695 [hep-lat]

    ADS  Google Scholar 

  14. S. Schaefer, R. Sommer, F. Virotta, Critical slowing down and error analysis in lattice QCD simulations. arXiv:1009.5228 [hep-lat]

  15. M. Lüscher, Topology, the Wilson flow and the HMC algorithm. arXiv:1009.5877 [hep-lat]

  16. S. Schaefer, Algorithms for lattice QCD: progress and challenges. arXiv:1011.5641 [hep-ph]

  17. S. Dürr et al. (BMW 08), Ab-initio determination of light hadron masses. Science 322, 1224–1227 (2008). arXiv:0906.3599 [hep-lat]

    Article  Google Scholar 

  18. K. Symanzik, Continuum limit and improved action in lattice theories. 1. Principles and φ 4 theory. Nucl. Phys. B 226, 187 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  19. K. Symanzik, Continuum limit and improved action in lattice theories. 2. O(N) nonlinear sigma model in perturbation theory. Nucl. Phys. B 226, 205 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  20. C.W. Bernard, M.F.L. Golterman, Partially quenched gauge theories and an application to staggered fermions. Phys. Rev. D 49, 486–494 (1994). hep-lat/9306005

    ADS  Google Scholar 

  21. S.R. Sharpe, Enhanced chiral logarithms in partially quenched QCD. Phys. Rev. D 56, 7052–7058 (1997). hep-lat/9707018. Erratum: Phys. Rev. D 62, 099901 (2000)

    ADS  Google Scholar 

  22. M.F.L. Golterman, K.-C. Leung, Applications of partially quenched chiral perturbation theory. Phys. Rev. D 57, 5703–5710 (1998). hep-lat/9711033

    ADS  Google Scholar 

  23. S.R. Sharpe, R.L. Singleton Jr., Spontaneous flavor and parity breaking with Wilson fermions. Phys. Rev. D 58, 074501 (1998). hep-lat/9804028

    ADS  Google Scholar 

  24. W.-J. Lee, S.R. Sharpe, Partial flavor symmetry restoration for chiral staggered fermions. Phys. Rev. D 60, 114503 (1999). hep-lat/9905023

    ADS  Google Scholar 

  25. S.R. Sharpe, N. Shoresh, Physical results from unphysical simulations. Phys. Rev. D 62, 094503 (2000). hep-lat/0006017

    ADS  Google Scholar 

  26. G. Rupak, N. Shoresh, Chiral perturbation theory for the Wilson lattice action. Phys. Rev. D 66, 054503 (2002). hep-lat/0201019

    ADS  Google Scholar 

  27. O. Bär, G. Rupak, N. Shoresh, Simulations with different lattice Dirac operators for valence and sea quarks. Phys. Rev. D 67, 114505 (2003). hep-lat/0210050

    ADS  Google Scholar 

  28. C. Aubin, C. Bernard, Pion and kaon masses in staggered chiral perturbation theory. Phys. Rev. D 68, 034014 (2003). hep-lat/0304014

    Article  ADS  Google Scholar 

  29. O. Bär, G. Rupak, N. Shoresh, Chiral perturbation theory at O(a ∗∗2) for lattice QCD. Phys. Rev. D 70, 034508 (2004). hep-lat/0306021

    ADS  Google Scholar 

  30. C. Aubin, C. Bernard, Pseudoscalar decay constants in staggered chiral perturbation theory. Phys. Rev. D 68, 074011 (2003). hep-lat/0306026

    Article  ADS  Google Scholar 

  31. S. Aoki, Chiral perturbation theory with Wilson-type fermions including a ∗∗2 effects: N(f)=2 degenerate case. Phys. Rev. D 68, 054508 (2003). hep-lat/0306027

    ADS  Google Scholar 

  32. S. Aoki, O. Bär, Twisted-mass QCD, O(a) improvement and Wilson chiral perturbation theory. Phys. Rev. D 70, 116011 (2004). hep-lat/0409006

    ADS  Google Scholar 

  33. S.R. Sharpe, R.S. Van de Water, Staggered chiral perturbation theory at next-to-leading order. Phys. Rev. D 71, 114505 (2005). hep-lat/0409018

    ADS  Google Scholar 

  34. S.R. Sharpe, J.M.S. Wu, Twisted mass chiral perturbation theory at next-to-leading order. Phys. Rev. D 71, 074501 (2005). hep-lat/0411021

    ADS  Google Scholar 

  35. O. Bär, C. Bernard, G. Rupak, N. Shoresh, Chiral perturbation theory for staggered sea quarks and Ginsparg–Wilson valence quarks. Phys. Rev. D 72, 054502 (2005). hep-lat/0503009

    ADS  Google Scholar 

  36. M. Golterman, T. Izubuchi, Y. Shamir, The role of the double pole in lattice QCD with mixed actions. Phys. Rev. D 71, 114508 (2005). hep-lat/0504013

    ADS  Google Scholar 

  37. J.-W. Chen, D. O’Connell, A. Walker-Loud, Two meson systems with Ginsparg–Wilson valence quarks. Phys. Rev. D 75, 054501 (2007). hep-lat/0611003

    Article  ADS  Google Scholar 

  38. J.-W. Chen, D. O’Connell, A. Walker-Loud, Universality of mixed action extrapolation formulae. J. High Energy Phys. 04, 090 (2009). arXiv:0706.0035 [hep-lat]

    Article  ADS  Google Scholar 

  39. J.-W. Chen, M. Golterman, D. O’Connell, A. Walker-Loud, Mixed action effective field theory: an addendum. Phys. Rev. D 79, 117502 (2009). arXiv:0905.2566 [hep-lat]

    ADS  Google Scholar 

  40. O. Bär, Chiral logs in twisted mass lattice QCD with large isospin breaking. arXiv:1008.0784 [hep-lat]

  41. S. Dürr et al. (BMW 10), The ratio F K /F π in QCD. Phys. Rev. D 81, 054507 (2010). arXiv:1001.4692 [hep-lat]

    Google Scholar 

  42. S. Aoki et al. (PACS-CS 09), Physical point simulation in 2+1 flavor lattice QCD. Phys. Rev. D 81, 074503 (2010). arXiv:0911.2561 [hep-lat]

    ADS  Google Scholar 

  43. J. Bijnens, G. Colangelo, G. Ecker, Double chiral logs. Phys. Lett. B 441, 437–446 (1998). hep-ph/9808421

    ADS  Google Scholar 

  44. G. Ecker, P. Masjuan, H. Neufeld, Chiral extrapolation of lattice data. Phys. Lett. B 692, 184–188 (2010). arXiv:1004.3422 [hep-ph]

    ADS  Google Scholar 

  45. G. Ecker, Chiral extrapolation of SU(3) amplitudes. arXiv:1012.1522 [hep-ph]

  46. W. Bietenholz et al. (QCDSF/UKQCD 10), Tuning the strange quark mass in lattice simulations. Phys. Lett. B 690, 436–441 (2010). arXiv:1003.1114 [hep-lat]

    ADS  Google Scholar 

  47. W. Bietenholz et al. (QCDSF/UKQCD 10A), Flavour symmetry breaking and tuning the strange quark mass for 2+1 quark flavours. PoS LAT2010, 122 (2010). arXiv:1012.4371 [hep-lat]

    Google Scholar 

  48. A. Manohar, C.T. Sachrajda, Quark masses. J. Phys. G 37, 075021 (2010). Review of Particle Physics, p. 583

    Google Scholar 

  49. B. Blossier et al. (ETM 07), Light quark masses and pseudoscalar decay constants from N f =2 Lattice QCD with twisted mass fermions. J. High Energy Phys. 04, 020 (2008). arXiv:0709.4574 [hep-lat]

    Google Scholar 

  50. J.C. Hardy, I.S. Towner, Superallowed 0+→0+ nuclear β decays: A new survey with precision tests of the conserved vector current hypothesis and the Standard Model. Phys. Rev. C 79, 055502 (2009). arXiv:0812.1202 [nucl-ex]

    Article  ADS  Google Scholar 

  51. C. Pena, Twisted mass QCD for weak matrix elements. PoS LAT2006, 019 (2006). hep-lat/0610109. This is, to the best of our knowledge, the first time colour coding was used. It does not appear in the proceedings but in the slides, see http://www.physics.utah.edu/lat06/abstracts/sessions/plenary.html

    Google Scholar 

  52. R. Frezzotti, P.A. Grassi, S. Sint, P. Weisz (ALPHA 01), Lattice QCD with a chirally twisted mass term. J. High Energy Phys. 08, 058 (2001). hep-lat/0101001

    Google Scholar 

  53. R. Frezzotti, G.C. Rossi, Chirally improving Wilson fermions. I: O(a) improvement. J. High Energy Phys. 08, 007 (2004). hep-lat/0306014

    Article  ADS  Google Scholar 

  54. P. Boucaud et al. (ETM 07A), Dynamical twisted mass fermions with light quarks. Phys. Lett. B 650, 304–311 (2007). hep-lat/0701012

    ADS  Google Scholar 

  55. S. Dürr, Theoretical issues with staggered fermion simulations. PoS LAT2005, 021 (2006). hep-lat/0509026

    Google Scholar 

  56. S.R. Sharpe, Rooted staggered fermions: good, bad or ugly? PoS LAT2006, 022 (2006). hep-lat/0610094

    Google Scholar 

  57. A.S. Kronfeld, Lattice gauge theory with staggered fermions: how, where, and why (not). PoS LAT2007, 016 (2007). arXiv:0711.0699 [hep-lat]

    Google Scholar 

  58. M. Golterman, QCD with rooted staggered fermions. PoS CONFINEMENT8, 014 (2008). arXiv:0812.3110 [hep-ph]

    Google Scholar 

  59. A. Bazavov et al. (MILC 09A), MILC results for light pseudoscalars. PoS CD09, 007 (2009). arXiv:0910.2966 [hep-ph]

    Google Scholar 

  60. R. Baron, P. Boucaud, J. Carbonell, A. Deuzeman, V. Drach et al. (ETM 10), Light hadrons from lattice QCD with light (u,d), strange and charm dynamical quarks. J. High Energy Phys. 1006, 111 (2010). arXiv:1004.5284 [hep-lat]

    Article  ADS  Google Scholar 

  61. L. Lellouch, Kaon physics: a lattice perspective. PoS LAT2008, 015 (2009). arXiv:0902.4545 [hep-lat]

    Google Scholar 

  62. M. Gell-Mann, R.J. Oakes, B. Renner, Behavior of current divergences under SU(3)×SU(3). Phys. Rev. 175, 2195–2199 (1968)

    Article  ADS  Google Scholar 

  63. S. Aoki et al. (PACS-CS 08), 2+1 Flavor lattice QCD toward the physical point. Phys. Rev. D 79, 034503 (2009). arXiv:0807.1661 [hep-lat]

    ADS  Google Scholar 

  64. S. Aoki et al. (PACS-CS 10), Non-perturbative renormalization of quark mass in N f =2+1 QCD with the Schroedinger functional scheme. J. High Energy Phys. 08, 101 (2010). arXiv:1006.1164 [hep-lat]

    Article  ADS  Google Scholar 

  65. S. Dürr et al. (BMW 10A), Lattice QCD at the physical point: light quark masses. arXiv:1011.2403 [hep-lat]

  66. B. Bloch-Devaux, Results from NA48/2 on ππ scattering lengths measurements in K ±π + π e ± ν and K ±π 0 π 0 π ± decays. PoS CONFINEMENT8, 029 (2008)

    Google Scholar 

  67. J. Gasser, A. Rusetsky, I. Scimemi, Electromagnetic corrections in hadronic processes. Eur. Phys. J. C 32, 97–114 (2003). hep-ph/0305260

    Article  ADS  Google Scholar 

  68. A. Rusetsky, Isospin symmetry breaking. PoS CD09, 071 (2009). arXiv:0910.5151 [hep-ph]

    Google Scholar 

  69. J. Gasser, Theoretical progress on cusp effect and K 4 decays. PoS KAON, 033 (2008). arXiv:0710.3048 [hep-ph]

    Google Scholar 

  70. H. Leutwyler, Light quark masses. PoS CD09, 005 (2009). arXiv:0911.1416 [hep-ph]

    Google Scholar 

  71. R.F. Dashen, Chiral SU(3)×SU(3) as a symmetry of the strong interactions. Phys. Rev. 183, 1245–1260 (1969)

    Article  ADS  Google Scholar 

  72. A. Duncan, E. Eichten, H. Thacker, Electromagnetic splittings and light quark masses in lattice QCD. Phys. Rev. Lett. 76, 3894–3897 (1996). hep-lat/9602005

    Article  ADS  Google Scholar 

  73. T. Blum, T. Doi, M. Hayakawa, T. Izubuchi, N. Yamada (RBC 07), Determination of light quark masses from the electromagnetic splitting of pseudoscalar meson masses computed with two flavors of domain wall fermions. Phys. Rev. D 76, 114508 (2007). arXiv:0708.0484 [hep-lat]

    ADS  Google Scholar 

  74. T. Blum et al. (Blum 10), Electromagnetic mass splittings of the low lying hadrons and quark masses from 2+1 flavor lattice QCD+QED. Phys. Rev. D 82, 094508 (2010). arXiv:1006.1311 [hep-lat]

    ADS  Google Scholar 

  75. A. Portelli et al. (BMW 10C), Electromagnetic corrections to light hadron masses. PoS LAT2010, 121 (2010). arXiv:1011.4189 [hep-lat]

    Google Scholar 

  76. C. Aubin et al. (MILC 04A), Results for light pseudoscalars from three-flavor simulations. Nucl. Phys. Proc. Suppl. 140, 231–233 (2005). hep-lat/0409041

    Article  ADS  Google Scholar 

  77. C. Aubin et al. (MILC 04), Light pseudoscalar decay constants, quark masses, and low energy constants from three-flavor lattice QCD. Phys. Rev. D 70, 114501 (2004). hep-lat/0407028

    ADS  Google Scholar 

  78. J. Bijnens, J. Prades, Electromagnetic corrections for pions and kaons: masses and polarizabilities. Nucl. Phys. B 490, 239–271 (1997). hep-ph/9610360

    Article  ADS  Google Scholar 

  79. J.F. Donoghue, A.F. Perez, The electromagnetic mass differences of pions and kaons. Phys. Rev. D 55, 7075–7092 (1997). hep-ph/9611331

    ADS  Google Scholar 

  80. S. Basak et al. (MILC 08), Electromagnetic splittings of hadrons from improved staggered quarks in full QCD. PoS LAT2008, 127 (2008). arXiv:0812.4486 [hep-lat]

    Google Scholar 

  81. C. Bernard, E.D. Freeland, Electromagnetic corrections in staggered chiral perturbation theory. PoS LAT2010, 084 (2010). arXiv:1011.3994 [hep-lat]

    Google Scholar 

  82. R. Urech, Virtual photons in chiral perturbation theory. Nucl. Phys. B 433, 234–254 (1995). hep-ph/9405341

    Article  ADS  Google Scholar 

  83. R. Baur, R. Urech, On the corrections to Dashen’s theorem. Phys. Rev. D 53, 6552–6557 (1996). hep-ph/9508393

    ADS  Google Scholar 

  84. R. Baur, R. Urech, Resonance contributions to the electromagnetic low energy constants of chiral perturbation theory. Nucl. Phys. B 499, 319–348 (1997). hep-ph/9612328

    Article  ADS  Google Scholar 

  85. B. Moussallam, A sum rule approach to the violation of Dashen’s theorem. Nucl. Phys. B 504, 381–414 (1997). hep-ph/9701400

    Article  ADS  Google Scholar 

  86. W. Cottingham, The neutron proton mass difference and electron scattering experiments. Ann. Phys. 25, 424 (1963)

    Article  ADS  Google Scholar 

  87. R.H. Socolow, Departures from the Eightfold Way. 3. Pseudoscalar-meson electromagnetic masses. Phys. Rev. B 137, 1221–1228 (1965)

    MathSciNet  ADS  Google Scholar 

  88. D.J. Gross, S.B. Treiman, F. Wilczek, Light quark masses and isospin violation. Phys. Rev. D 19, 2188 (1979)

    ADS  Google Scholar 

  89. J. Gasser, H. Leutwyler, Quark masses. Phys. Rep. 87, 77–169 (1982)

    Article  ADS  Google Scholar 

  90. T. Das, G.S. Guralnik, V.S. Mathur, F.E. Low, J.E. Young, Electromagnetic mass difference of pions. Phys. Rev. Lett. 18, 759–761 (1967)

    Article  ADS  Google Scholar 

  91. J. Gasser, H. Leutwyler (GL 85), Chiral perturbation theory: expansions in the mass of the strange quark. Nucl. Phys. B 250, 465 (1985)

    Article  ADS  Google Scholar 

  92. G. Amoros, J. Bijnens, P. Talavera, QCD isospin breaking in meson masses, decay constants and quark mass ratios. Nucl. Phys. B 602, 87–108 (2001). hep-ph/0101127

    Article  ADS  Google Scholar 

  93. J. Gasser, H. Leutwyler (GL 84), Chiral perturbation theory to one loop. Ann. Phys. 158, 142 (1984)

    Article  ADS  Google Scholar 

  94. B. Blossier et al. (ETM 10B), Average up/down, strange and charm quark masses with N f =2 twisted mass lattice QCD. Phys. Rev. D 82, 114513 (2010). arXiv:1010.3659 [hep-lat]

    ADS  Google Scholar 

  95. J. Noaki et al. (JLQCD/TWQCD 08A), Convergence of the chiral expansion in two-flavor lattice QCD. Phys. Rev. Lett. 101, 202004 (2008). arXiv:0806.0894 [hep-lat]

    Article  ADS  Google Scholar 

  96. M. Göckeler et al. (QCDSF/UKQCD 06), Estimating the unquenched strange quark mass from the lattice axial Ward identity. Phys. Rev. D 73, 054508 (2006). hep-lat/0601004

    Google Scholar 

  97. D. Becirevic et al. (SPQcdR 05), Non-perturbatively renormalised light quark masses from a lattice simulation with N f =2. Nucl. Phys. B 734, 138–155 (2006). hep-lat/0510014

    Article  ADS  Google Scholar 

  98. M. Della Morte et al. (ALPHA 05), Non-perturbative quark mass renormalization in two-flavor QCD. Nucl. Phys. B 729, 117–134 (2005). hep-lat/0507035

    Article  ADS  Google Scholar 

  99. M. Göckeler et al. (QCDSF/UKQCD 04), Determination of light and strange quark masses from full lattice QCD. Phys. Lett. B 639, 307–311 (2006). hep-ph/0409312

    Google Scholar 

  100. S. Aoki et al. (JLQCD 02), Light hadron spectroscopy with two flavors of O(a)-improved dynamical quarks. Phys. Rev. D 68, 054502 (2003). hep-lat/0212039

    ADS  Google Scholar 

  101. A. Ali Khan et al. (CP-PACS 01), Light hadron spectroscopy with two flavors of dynamical quarks on the lattice. Phys. Rev. D 65, 054505 (2002). hep-lat/0105015. Erratum: Phys. Rev. D 66, 059901 (2003)

    ADS  Google Scholar 

  102. M. Constantinou et al. (ETM 10C), Non-perturbative renormalization of quark bilinear operators with N f =2 (tmQCD) Wilson fermions and the tree-level improved gauge action. J. High Energy Phys. 08, 068 (2010). arXiv:1004.1115 [hep-lat]

    Article  ADS  Google Scholar 

  103. A. Bazavov et al. (MILC 10A), Staggered chiral perturbation theory in the two-flavor case and SU(2) analysis of the MILC data. PoS LAT2010, 083 (2010). arXiv:1011.1792 [hep-lat]

    Google Scholar 

  104. C. McNeile, C.T.H. Davies, E. Follana, K. Hornbostel, G.P. Lepage (HPQCD 10), High-precision c and b masses, and QCD coupling from current-current correlators in lattice and continuum QCD. Phys. Rev. D 82, 034512 (2010). arXiv:1004.4285 [hep-lat]

    ADS  Google Scholar 

  105. S. Dürr et al. (BMW 10B), Lattice QCD at the physical point: Simulation and analysis details. arXiv:1011.2711 [hep-lat]

  106. Y. Aoki et al. (RBC/UKQCD 10A), Continuum limit physics from 2+1 flavor domain wall QCD. arXiv:1011.0892 [hep-lat]

  107. C.T.H. Davies et al. (HPQCD 09), Precise charm to strange mass ratio and light quark masses from full lattice QCD. Phys. Rev. Lett. 104, 132003 (2010). arXiv:0910.3102 [hep-ph]

    Article  ADS  Google Scholar 

  108. C. Allton et al. (RBC/UKQCD 08), Physical results from 2+1 flavor domain wall QCD and SU(2) chiral perturbation theory. Phys. Rev. D 78, 114509 (2008). arXiv:0804.0473 [hep-lat]

    ADS  Google Scholar 

  109. T. Ishikawa et al. (CP-PACS/JLQCD 07), Light quark masses from unquenched lattice QCD. Phys. Rev. D 78, 011502 (2008). arXiv:0704.1937 [hep-lat]

    ADS  Google Scholar 

  110. Q. Mason, H.D. Trottier, R. Horgan, C.T.H. Davies, G.P. Lepage (HPQCD 05), High-precision determination of the light-quark masses from realistic lattice QCD. Phys. Rev. D 73, 114501 (2006). hep-ph/0511160

    ADS  Google Scholar 

  111. C. Aubin et al. (HPQCD/MILC/UKQCD 04), First determination of the strange and light quark masses from full lattice QCD. Phys. Rev. D 70, 031504 (2004). hep-lat/0405022

    ADS  Google Scholar 

  112. J. Garden, J. Heitger, R. Sommer, H. Wittig (ALPHA 99), Precision computation of the strange quark’s mass in quenched QCD. Nucl. Phys. B 571, 237–256 (2000). hep-lat/9906013

    Article  ADS  Google Scholar 

  113. A.T. Lytle, Non-perturbative calculation of Z m using Asqtad fermions. PoS LAT2009, 202 (2009). arXiv:0910.3721 [hep-lat]

    Google Scholar 

  114. M. Lüscher, R. Narayanan, P. Weisz, U. Wolff, The Schrödinger functional: a renormalizable probe for non-Abelian gauge theories. Nucl. Phys. B 384, 168–228 (1992). hep-lat/9207009

    Article  ADS  Google Scholar 

  115. G. Martinelli, C. Pittori, C.T. Sachrajda, M. Testa, A. Vladikas, A general method for nonperturbative renormalization of lattice operators. Nucl. Phys. B 445, 81–108 (1995). hep-lat/9411010

    Article  ADS  Google Scholar 

  116. I. Allison et al. (HPQCD 08), High-precision charm-quark mass from current-current correlators in lattice and continuum QCD. Phys. Rev. D 78, 054513 (2008). arXiv:0805.2999 [hep-lat]

    ADS  Google Scholar 

  117. A.I. Vainshtein et al., Sum rules for light quarks in quantum chromodynamics. Sov. J. Nucl. Phys. 27, 274 (1978)

    Google Scholar 

  118. S. Narison, Strange quark mass from e + e revisited and present status of light quark masses. Phys. Rev. D 74, 034013 (2006). hep-ph/0510108

    ADS  Google Scholar 

  119. M. Jamin, J.A. Oller, A. Pich, Scalar form factor and light quark masses. Phys. Rev. D 74, 074009 (2006). hep-ph/0605095

    ADS  Google Scholar 

  120. K.G. Chetyrkin, A. Khodjamirian, Strange quark mass from pseudoscalar sum rule with \(O(\alpha _{s}^{4})\) accuracy. Eur. Phys. J. C 46, 721–728 (2006). hep-ph/0512295

    Article  ADS  Google Scholar 

  121. C.A. Dominguez, N.F. Nasrallah, R. Röntsch, K. Schilcher, Light quark masses from QCD sum rules with minimal hadronic bias. Nucl. Phys. Proc. Suppl. 186, 133–136 (2009). arXiv:0808.3909 [hep-ph]

    Article  ADS  Google Scholar 

  122. K. Nakamura et al. (PDG 10), Review of particle physics. J. Phys. G 37, 075021 (2010)

    ADS  Google Scholar 

  123. K. Maltman, J. Kambor, m u +m d from isovector pseudoscalar sum rules. Phys. Lett. B 517, 332–338 (2001). hep-ph/0107060

    ADS  Google Scholar 

  124. T. van Ritbergen, J.A.M. Vermaseren, S.A. Larin, The four-loop β-function in quantum chromodynamics. Phys. Lett. B 400, 379–384 (1997). hep-ph/9701390

    ADS  Google Scholar 

  125. K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser, Strong coupling constant with flavour thresholds at four loops in the \(\overline{\mathrm{MS}}\) scheme. Phys. Rev. Lett. 79, 2184–2187 (1997). hep-ph/9706430

    Article  ADS  Google Scholar 

  126. K.G. Chetyrkin, A. Retey, Renormalization and running of quark mass and field in the regularization invariant and \(\overline{\mathrm{MS}}\) schemes at three and four loops. Nucl. Phys. B 583, 3–34 (2000). hep-ph/9910332

    Article  ADS  Google Scholar 

  127. S. Bethke, The 2009 World Average of α s (M Z ). Eur. Phys. J. C 64, 689–703 (2009). arXiv:0908.1135 [hep-ph]

    Article  ADS  Google Scholar 

  128. S. Weinberg, The problem of mass. Trans. New York Acad. Sci. 38, 185–201 (1977)

    Google Scholar 

  129. H. Leutwyler, The ratios of the light quark masses. Phys. Lett. B 378, 313–318 (1996). hep-ph/9602366

    ADS  Google Scholar 

  130. R. Kaiser, The η and the η′ at large N c . Diploma work, University of Bern, 1997

  131. H. Leutwyler, On the 1/N-expansion in chiral perturbation theory. Nucl. Phys. Proc. Suppl. 64, 223–231 (1998). hep-ph/9709408

    Article  ADS  Google Scholar 

  132. J.A. Oller, L. Roca, Non-perturbative study of the light pseudoscalar masses in chiral dynamics. Eur. Phys. J. A 34, 371–386 (2007). hep-ph/0608290

    ADS  Google Scholar 

  133. J. Gasser, H. Leutwyler, η→3π to one loop. Nucl. Phys. B 250, 539 (1985)

    Article  ADS  Google Scholar 

  134. J. Kambor, C. Wiesendanger, D. Wyler, Final state interactions and Khuri-Treiman equations in η→3π decays. Nucl. Phys. B 465, 215–266 (1996). hep-ph/9509374

    Article  ADS  Google Scholar 

  135. A.V. Anisovich, H. Leutwyler, Dispersive analysis of the decay η→3π. Phys. Lett. B 375, 335–342 (1996). hep-ph/9601237

    ADS  Google Scholar 

  136. C. Ditsche, B. Kubis, U.-G. Meissner, Electromagnetic corrections in η→3π decays. Eur. Phys. J. C 60, 83–105 (2009). arXiv:0812.0344 [hep-ph]

    Article  ADS  Google Scholar 

  137. G. Colangelo, S. Lanz, E. Passemar, A new dispersive analysis of η→3π. PoS CD09, 047 (2009). arXiv:0910.0765 [hep-ph]

    Google Scholar 

  138. J. Bijnens, K. Ghorbani, η→3π at two loops in chiral perturbation theory. J. High Energy Phys. 11, 030 (2007). arXiv:0709.0230 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  139. M. Antonelli et al., An evaluation of |V us | and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays. Eur. Phys. J. C 69, 399–424 (2010). arXiv:1005.2323 [hep-ph]

    Article  ADS  Google Scholar 

  140. J. Gasser, G.R.S. Zarnauskas, On the pion decay constant. Phys. Lett. B 693, 122–128 (2010). arXiv:1008.3479 [hep-ph]

    ADS  Google Scholar 

  141. J.L. Rosner, S. Stone, Decay constants of charged pseudoscalar mesons. J. Phys. G 37, 075021 (2010). Review of Particle Physics, p. 861

    Google Scholar 

  142. V. Cirigliano, H. Neufeld, A note on isospin violation in P l2(γ) decays. arXiv:1102.0563 [hep-ph]

  143. I.S. Towner, J.C. Hardy, An improved calculation of the isospin-symmetry-breaking corrections to superallowed Fermi beta decay. Phys. Rev. C 77, 025501 (2008). arXiv:0710.3181 [nucl-th]

    Article  ADS  Google Scholar 

  144. G.A. Miller, A. Schwenk, Isospin-symmetry-breaking corrections to superallowed Fermi beta decay: formalism and schematic models. Phys. Rev. C 78, 035501 (2008). arXiv:0805.0603 [nucl-th]

    Article  ADS  Google Scholar 

  145. N. Auerbach, Coulomb corrections to superallowed beta decay in nuclei. Phys. Rev. C 79, 035502 (2009). arXiv:0811.4742 [nucl-th]

    Article  ADS  Google Scholar 

  146. H. Liang, N. Van Giai, J. Meng, Isospin corrections for superallowed Fermi beta decay in self-consistent relativistic random-phase approximation approaches. Phys. Rev. C 79, 064316 (2009). arXiv:0904.3673 [nucl-th]

    Article  ADS  Google Scholar 

  147. G.A. Miller, A. Schwenk, Isospin-symmetry-breaking corrections to superallowed Fermi beta decay: radial excitations. Phys. Rev. C 80, 064319 (2009). arXiv:0910.2790 [nucl-th]

    Article  ADS  Google Scholar 

  148. I.S. Towner, J.C. Hardy, Comparative tests of isospin-symmetry-breaking corrections to superallowed 0+→0+ nuclear beta decay. arXiv:1007.5343 [nucl-th]

  149. E. Gamiz, M. Jamin, A. Pich, J. Prades, F. Schwab, Determination of m s and |V us | from hadronic tau decays. J. High Energy Phys. 01, 060 (2003). hep-ph/0212230

    Article  ADS  Google Scholar 

  150. E. Gamiz, M. Jamin, A. Pich, J. Prades, F. Schwab, V us and m s from hadronic τ decays. Phys. Rev. Lett. 94, 011803 (2005). hep-ph/0408044

    Article  ADS  Google Scholar 

  151. K. Maltman, A mixed τ-electroproduction sum rule for V us . Phys. Lett. B 672, 257–263 (2009). arXiv:0811.1590 [hep-ph]

    ADS  Google Scholar 

  152. A. Pich, R. Kass, talks given at CKM 08, Rome, Italy, 2008. http://ckm2008.roma1.infn.it

  153. E. Gamiz, M. Jamin, A. Pich, J. Prades, F. Schwab, Theoretical progress on the V us determination from τ decays. PoS KAON, 008 (2008). arXiv:0709.0282 [hep-ph]

    Google Scholar 

  154. K. Maltman, C.E. Wolfe, S. Banerjee, J.M. Roney, I. Nugent, Status of the hadronic τ determination of V us . Int. J. Mod. Phys. A 23, 3191–3195 (2008). arXiv:0807.3195 [hep-ph]

    Article  ADS  Google Scholar 

  155. K. Maltman, C.E. Wolfe, S. Banerjee, I.M. Nugent, J.M. Roney, Status of the hadronic τ decay determination of |V us |. Nucl. Phys. Proc. Suppl. 189, 175–180 (2009). arXiv:0906.1386 [hep-ph]

    Article  ADS  Google Scholar 

  156. M. Beneke, M. Jamin, α s and the τ hadronic width: fixed-order, contour-improved and higher-order perturbation theory. J. High Energy Phys. 09, 044 (2008). arXiv:0806.3156 [hep-ph]

    Article  ADS  Google Scholar 

  157. I. Caprini, J. Fischer, α s from τ decays: contour-improved versus fixed-order summation in a new QCD perturbation expansion. Eur. Phys. J. C 64, 35–45 (2009). arXiv:0906.5211 [hep-ph]

    Article  ADS  Google Scholar 

  158. S. Menke, On the determination of α s from hadronic τ decays with contour-improved, fixed order and renormalon-chain perturbation theory. arXiv:0904.1796 [hep-ph]

  159. P.A. Boyle et al. (RBC/UKQCD 10), Kπ form factors with reduced model dependence. Eur. Phys. J. C 69, 159–167 (2010). arXiv:1004.0886 [hep-lat]

    Article  ADS  Google Scholar 

  160. P.A. Boyle et al. (RBC/UKQCD 07), K l3 semileptonic form factor from 2+1 flavour lattice QCD. Phys. Rev. Lett. 100, 141601 (2008). arXiv:0710.5136 [hep-lat]

    Article  ADS  Google Scholar 

  161. V. Lubicz, F. Mescia, L. Orifici, S. Simula, C. Tarantino (ETM 10D), Improved analysis of the scalar and vector form factors of kaon semileptonic decays with N f =2 twisted-mass fermions. PoS LAT2010, 316 (2010). arXiv:1012.3573 [hep-lat]

    Google Scholar 

  162. V. Lubicz, F. Mescia, S. Simula, C. Tarantino (ETM 09A), Kπℓν semileptonic form factors from two-flavor lattice QCD. Phys. Rev. D 80, 111502 (2009). arXiv:0906.4728 [hep-lat]

    ADS  Google Scholar 

  163. D. Brömmel et al. (QCDSF 07), Kaon semileptonic decay form factors from N f =2 non-perturbatively O(a)-improved Wilson fermions. PoS LAT2007, 364 (2007). arXiv:0710.2100 [hep-lat]

    Google Scholar 

  164. C. Dawson, T. Izubuchi, T. Kaneko, S. Sasaki, A. Soni (RBC 06), Vector form factor in K l3 semileptonic decay with two flavors of dynamical domain-wall quarks. Phys. Rev. D 74, 114502 (2006). hep-ph/0607162

    ADS  Google Scholar 

  165. N. Tsutsui et al. (JLQCD 05), Kaon semileptonic decay form factors in two-flavor QCD. PoS LAT2005, 357 (2006). hep-lat/0510068

    Google Scholar 

  166. M. Ademollo, R. Gatto, Nonrenormalization theorem for the strangeness violating vector currents. Phys. Rev. Lett. 13, 264–265 (1964)

    Article  ADS  Google Scholar 

  167. G. Furlan, F. Lannoy, C. Rossetti, G. Segré, Symmetry-breaking corrections to weak vector currents. Nuovo Cimento 38, 1747 (1965)

    Article  Google Scholar 

  168. J. Gasser, H. Leutwyler, Low-energy expansion of meson form factors. Nucl. Phys. B 250, 517–538 (1985)

    Article  ADS  Google Scholar 

  169. D. Becirevic, G. Martinelli, G. Villadoro, The Ademollo-Gatto theorem for lattice semileptonic decays. Phys. Lett. B 633, 84–88 (2006). hep-lat/0508013

    ADS  Google Scholar 

  170. J.M. Flynn, C.T. Sachrajda (RBC 08), SU(2) chiral perturbation theory for Kl3 decay amplitudes. Nucl. Phys. B 812, 64–80 (2009). arXiv:0809.1229 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  171. F. Farchioni, G. Herdoiza, K. Jansen, M. Petschlies, C. Urbach et al. (ETM 10E), Pseudoscalar decay constants from N f =2+1+1 twisted mass lattice QCD. PoS LAT2010, 128 (2010). arXiv:1012.0200 [hep-lat]

    Google Scholar 

  172. A. Bazavov et al. (MILC 10), Results for light pseudoscalar mesons. PoS LAT2010, 074 (2010). arXiv:1012.0868 [hep-lat]

    Google Scholar 

  173. J. Noaki et al. (JLQCD/TWQCD 09A), Chiral properties of light mesons with N f =2+1 overlap fermions. PoS LAT2009, 096 (2009). arXiv:0910.5532 [hep-lat]

    Google Scholar 

  174. C. Aubin, J. Laiho, R.S. Van de Water (Aubin 08), Light pseudoscalar meson masses and decay constants from mixed action lattice QCD. PoS LAT2008, 105 (2008). arXiv:0810.4328 [hep-lat]

    Google Scholar 

  175. Y. Kuramashi (PACS-CS 08A), PACS-CS results for 2+1 flavor lattice QCD simulation on and off the physical point. PoS LAT2008, 018 (2008). arXiv:0811.2630 [hep-lat]

    Google Scholar 

  176. E. Follana, C.T.H. Davies, G.P. Lepage, J. Shigemitsu (HPQCD/UKQCD 07), High precision determination of the π, K, D and D s decay constants from lattice QCD. Phys. Rev. Lett. 100, 062002 (2008). arXiv:0706.1726 [hep-lat]

    Article  ADS  Google Scholar 

  177. S.R. Beane, P.F. Bedaque, K. Orginos, M.J. Savage (NPLQCD 06), f K /f π in full QCD with domain wall valence quarks. Phys. Rev. D 75, 094501 (2007). hep-lat/0606023

    ADS  Google Scholar 

  178. B. Blossier et al. (ETM 09), Pseudoscalar decay constants of kaon and D-mesons from N f =2 twisted mass Lattice QCD. J. High Energy Phys. 07, 043 (2009). arXiv:0904.0954 [hep-lat]

    Google Scholar 

  179. G. Schierholz et al. (QCDSF/UKQCD 07), Probing the chiral limit with clover fermions I: The meson sector, talk given at Lattice 2007, Regensburg, Germany, PoS LAT2007, 133. http://www.physik.uni-regensburg.de/lat07/hevea/schierholz.pdf

  180. H. Leutwyler, M. Roos (LR 84), Determination of the elements V us and V ud of the Kobayashi-Maskawa matrix. Z. Phys. C 25, 91 (1984)

    ADS  Google Scholar 

  181. P. Post, K. Schilcher, K l3 form factors at order p 6 in chiral perturbation theory. Eur. Phys. J. C 25, 427–443 (2002). hep-ph/0112352

    Article  ADS  Google Scholar 

  182. J. Bijnens, P. Talavera, K l3 decays in chiral perturbation theory. Nucl. Phys. B 669, 341–362 (2003). hep-ph/0303103

    Article  ADS  Google Scholar 

  183. M. Jamin, J.A. Oller, A. Pich, Order p 6 chiral couplings from the scalar form factor. J. High Energy Phys. 02, 047 (2004). hep-ph/0401080

    Article  ADS  Google Scholar 

  184. V. Cirigliano et al., The Green function and SU(3) breaking in K l3 decays. J. High Energy Phys. 04, 006 (2005). hep-ph/0503108

    Article  ADS  Google Scholar 

  185. A. Kastner, H. Neufeld, The K l3 scalar form factors in the Standard Model. Eur. Phys. J. C 57, 541–556 (2008). arXiv:0805.2222 [hep-ph]

    Article  ADS  Google Scholar 

  186. V. Bernard, M. Oertel, E. Passemar, J. Stern, Dispersive representation and shape of the K 3 form factors: robustness. Phys. Rev. D 80, 034034 (2009). arXiv:0903.1654 [hep-ph]

    ADS  Google Scholar 

  187. V. Bernard, E. Passemar, Chiral extrapolation of the strangeness changing form factor. J. High Energy Phys. 04, 001 (2010). arXiv:0912.3792 [hep-ph]

    Article  ADS  Google Scholar 

  188. E. Passemar, Dispersive approach to K 3 form factors, in NA62 Physics Handbook Workshop (CERN 2009) (2009)

    Google Scholar 

  189. E. Passemar, Precision SM calculations and theoretical interests beyond the SM in K 2 and K 3 decays. PoS KAON09, 024 (2009). arXiv:1003.4696 [hep-ph]

    Google Scholar 

  190. S. Di Vita et al., Vector and scalar form factors for K- and D-meson semileptonic decays from twisted mass fermions with N f =2. PoS LAT2009, 257 (2009). arXiv:0910.4845 [hep-ph]

    Google Scholar 

  191. D. Becirevic et al. (SPQcdR 04), The Kπ vector form factor at zero momentum transfer on the lattice. Nucl. Phys. B 705, 339–362 (2005). hep-ph/0403217

    Article  ADS  Google Scholar 

  192. R. Kowalewski, T. Mannel, Determination of V cb and V ub . J. Phys. G 37, 075021 (2010). Review of Particle Physics, p. 1014

    Google Scholar 

  193. M.E. Fisher, V. Privman, First-order transitions breaking O(n) symmetry: Finite-size scaling. Phys. Rev. B 32, 447–464 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  194. E. Brezin, J. Zinn-Justin, Finite size effects in phase transitions. Nucl. Phys. B 257, 867 (1985)

    Article  ADS  Google Scholar 

  195. J. Gasser, H. Leutwyler, Light quarks at low temperatures. Phys. Lett. B 184, 83 (1987)

    ADS  Google Scholar 

  196. J. Gasser, H. Leutwyler, Thermodynamics of chiral symmetry. Phys. Lett. B 188, 477 (1987)

    ADS  Google Scholar 

  197. J. Gasser, H. Leutwyler, Spontaneously broken symmetries: effective Lagrangians at finite volume. Nucl. Phys. B 307, 763 (1988)

    Article  ADS  Google Scholar 

  198. P. Hasenfratz, H. Leutwyler, Goldstone boson related finite size effects in field theory and critical phenomena with O(N) symmetry. Nucl. Phys. B 343, 241–284 (1990)

    Article  ADS  Google Scholar 

  199. G. Colangelo, J. Gasser, H. Leutwyler (CGL 01), ππ scattering. Nucl. Phys. B 603, 125–179 (2001). hep-ph/0103088

    Article  ADS  Google Scholar 

  200. F.C. Hansen, Finite size effects in spontaneously broken SU(N)×SU(N) theories. Nucl. Phys. B 345, 685–708 (1990)

    Article  ADS  Google Scholar 

  201. F.C. Hansen, H. Leutwyler, Charge correlations and topological susceptibility in QCD. Nucl. Phys. B 350, 201–227 (1991)

    Article  ADS  Google Scholar 

  202. H. Leutwyler, A.V. Smilga, Spectrum of Dirac operator and role of winding number in QCD. Phys. Rev. D 46, 5607–5632 (1992)

    MathSciNet  ADS  Google Scholar 

  203. P.H. Damgaard, M.C. Diamantini, P. Hernandez, K. Jansen, Finite-size scaling of meson propagators. Nucl. Phys. B 629, 445–478 (2002). hep-lat/0112016

    Article  ADS  MATH  Google Scholar 

  204. P.H. Damgaard, P. Hernandez, K. Jansen, M. Laine, L. Lellouch, Finite-size scaling of vector and axial current correlators. Nucl. Phys. B 656, 226–238 (2003). hep-lat/0211020

    Article  ADS  MATH  Google Scholar 

  205. S. Aoki, H. Fukaya, Chiral perturbation theory in a theta vacuum. Phys. Rev. D 81, 034022 (2010). arXiv:0906.4852 [hep-lat]

    ADS  Google Scholar 

  206. F. Bernardoni, P.H. Damgaard, H. Fukaya, P. Hernandez, Finite volume scaling of Pseudo Nambu–Goldstone Bosons in QCD. J. High Energy Phys. 10, 008 (2008). arXiv:0808.1986 [hep-lat]

    Article  ADS  Google Scholar 

  207. P.H. Damgaard, H. Fukaya, The chiral condensate in a finite volume. J. High Energy Phys. 01, 052 (2009). arXiv:0812.2797 [pdf]

    Article  ADS  Google Scholar 

  208. H. Leutwyler, Energy levels of light quarks confined to a box. Phys. Lett. B 189, 197 (1987)

    MathSciNet  ADS  Google Scholar 

  209. P. Hasenfratz, The QCD rotator in the chiral limit. Nucl. Phys. B 828, 201–214 (2010). arXiv:0909.3419 [hep-th]

    Article  ADS  MATH  Google Scholar 

  210. F. Niedermayer, C. Weiermann, The rotator spectrum in the δ-regime of the O(n) effective field theory in 3 and 4 dimensions. Nucl. Phys. B 842, 248–263 (2011). arXiv:1006.5855 [hep-lat]

    Article  ADS  MATH  Google Scholar 

  211. M. Weingart, The QCD rotator with a light quark mass. arXiv:1006.5076 [hep-lat]

  212. A. Hasenfratz, P. Hasenfratz, F. Niedermayer, D. Hierl, A. Schafer, First results in QCD with 2+1 light flavors using the fixed-point action. PoS LAT2006, 178 (2006). hep-lat/0610096

    Google Scholar 

  213. W. Bietenholz et al. (QCDSF 10), Pion in a box. Phys. Lett. B 687, 410–414 (2010). arXiv:1002.1696 [hep-lat]

    ADS  Google Scholar 

  214. P. Di Vecchia, G. Veneziano, Chiral dynamics in the large N limit. Nucl. Phys. B 171, 253 (1980)

    Article  ADS  Google Scholar 

  215. Y.-Y. Mao, T.-W. Chiu (TWQCD 09), Topological susceptibility to the one-loop order in chiral perturbation theory. Phys. Rev. D 80, 034502 (2009). arXiv:0903.2146 [hep-lat]

    ADS  Google Scholar 

  216. L. Giusti, M. Lüscher (CERN 08), Chiral symmetry breaking and the Banks–Casher relation in lattice QCD with Wilson quarks. J. High Energy Phys. 03, 013 (2009). arXiv:0812.3638 [hep-lat]

    Article  ADS  Google Scholar 

  217. T. Banks, A. Casher, Chiral symmetry breaking in confining theories. Nucl. Phys. B 169, 103 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  218. E.V. Shuryak, J.J.M. Verbaarschot, Random matrix theory and spectral sum rules for the Dirac operator in QCD. Nucl. Phys. A 560, 306–320 (1993). hep-th/9212088

    Article  ADS  Google Scholar 

  219. J.J.M. Verbaarschot, I. Zahed, Spectral density of the QCD Dirac operator near zero virtuality. Phys. Rev. Lett. 70, 3852–3855 (1993). hep-th/9303012

    Article  ADS  Google Scholar 

  220. J.J.M. Verbaarschot, The spectrum of the QCD Dirac operator and chiral random matrix theory: the threefold way. Phys. Rev. Lett. 72, 2531–2533 (1994). hep-th/9401059

    Article  MathSciNet  ADS  Google Scholar 

  221. J.J.M. Verbaarschot, T. Wettig, Random matrix theory and chiral symmetry in QCD. Annu. Rev. Nucl. Part. Sci. 50, 343–410 (2000). hep-ph/0003017

    Article  ADS  Google Scholar 

  222. S.M. Nishigaki, P.H. Damgaard, T. Wettig, Smallest Dirac eigenvalue distribution from random matrix theory. Phys. Rev. D 58, 087704 (1998). hep-th/9803007

    ADS  Google Scholar 

  223. P.H. Damgaard, S.M. Nishigaki, Distribution of the k-th smallest Dirac operator eigenvalue. Phys. Rev. D 63, 045012 (2001). hep-th/0006111

    MathSciNet  ADS  Google Scholar 

  224. F. Basile, G. Akemann, Equivalence of QCD in the epsilon-regime and chiral random matrix theory with or without chemical potential. J. High Energy Phys. 12, 043 (2007). arXiv:0710.0376 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  225. G. Akemann, P.H. Damgaard, J.C. Osborn, K. Splittorff, A new chiral two-matrix theory for Dirac spectra with imaginary chemical potential. Nucl. Phys. B 766, 34–67 (2007). hep-th/0609059

    Article  MathSciNet  ADS  MATH  Google Scholar 

  226. C. Lehner, S. Hashimoto, T. Wettig, The epsilon expansion at next-to-next-to-leading order with small imaginary chemical potential. J. High Energy Phys. 06, 028 (2010). arXiv:1004.5584 [hep-lat]

    Article  ADS  Google Scholar 

  227. C. Lehner, J. Bloch, S. Hashimoto, T. Wettig, Geometry dependence of RMT-based methods to extract the low-energy constants Sigma and F. arXiv:1101.5576 [hep-lat]

  228. L. Del Debbio, L. Giusti, M. Lüscher, R. Petronzio, N. Tantalo (CERN-TOV 05), Stability of lattice QCD simulations and the thermodynamic limit. J. High Energy Phys. 02, 011 (2006). hep-lat/0512021

    Article  ADS  Google Scholar 

  229. H. Fukaya et al., Two-flavor lattice QCD in the epsilon-regime and chiral random matrix theory. Phys. Rev. D 76, 054503 (2007). arXiv:0705.3322 [hep-lat]

    ADS  Google Scholar 

  230. C.B. Lang, P. Majumdar, W. Ortner, The condensate for two dynamical chirally improved quarks in QCD. Phys. Lett. B 649, 225–229 (2007). hep-lat/0611010

    ADS  Google Scholar 

  231. T. DeGrand, Z. Liu, S. Schaefer, Quark condensate in two-flavor QCD. Phys. Rev. D 74, 094504 (2006). hep-lat/0608019

    ADS  Google Scholar 

  232. P. Hasenfratz et al., 2+1 Flavor QCD simulated in the epsilon-regime in different topological sectors. J. High Energy Phys. 11, 100 (2009). arXiv:0707.0071 [hep-lat]

    Article  ADS  Google Scholar 

  233. T. DeGrand, S. Schaefer, Parameters of the lowest order chiral Lagrangian from fermion eigenvalues. Phys. Rev. D 76, 094509 (2007). arXiv:0708.1731 [hep-lat]

    ADS  Google Scholar 

  234. J.F. Donoghue, J. Gasser, H. Leutwyler, The decay of a light Higgs boson. Nucl. Phys. B 343, 341–368 (1990)

    Article  ADS  Google Scholar 

  235. J. Bijnens, G. Colangelo, P. Talavera (BCT 98), The vector and scalar form factors of the pion to two loops. J. High Energy Phys. 05, 014 (1998). hep-ph/9805389

    ADS  Google Scholar 

  236. R. Frezzotti, V. Lubicz, S. Simula (ETM 08), Electromagnetic form factor of the pion from twisted-mass lattice QCD at N f =2. Phys. Rev. D 79, 074506 (2009). arXiv:0812.4042 [hep-lat]

    ADS  Google Scholar 

  237. T. Kaneko et al. (JLQCD/TWQCD 08), Pion vector and scalar form factors with dynamical overlap quarks. PoS LAT2008, 158 (2008). arXiv:0810.2590 [hep-lat]

    Google Scholar 

  238. R. Baron et al. (ETM 09C), Light meson physics from maximally twisted mass lattice QCD. J. High Energy Phys. 08, 097 (2010). arXiv:0911.5061 [hep-lat]

    Article  ADS  Google Scholar 

  239. J. Gasser, C. Haefeli, M.A. Ivanov, M. Schmid, Integrating out strange quarks in ChPT. Phys. Lett. B 652, 21–26 (2007). arXiv:0706.0955 [hep-ph]

    ADS  Google Scholar 

  240. J. Gasser, C. Haefeli, M.A. Ivanov, M. Schmid, Integrating out strange quarks in ChPT: terms at order p 6. Phys. Lett. B 675, 49–53 (2009). arXiv:0903.0801 [hep-ph]

    ADS  Google Scholar 

  241. H. Fukaya et al. (JLQCD/TWQCD 10), Determination of the chiral condensate from QCD Dirac spectrum on the lattice. Phys. Rev. D 83, 074501 (2011). arXiv:1012.4052 [hep-lat]

    ADS  Google Scholar 

  242. H. Fukaya et al. (JLQCD 09), Determination of the chiral condensate from 2+1-flavor lattice QCD. Phys. Rev. Lett. 104, 122002 (2010). arXiv:0911.5555 [hep-lat]

    Article  ADS  Google Scholar 

  243. T.-W. Chiu, T.-H. Hsieh, P.-K. Tseng (TWQCD 08), Topological susceptibility in 2+1 flavors lattice QCD with domain-wall fermions. Phys. Lett. B 671, 135–138 (2009). arXiv:0810.3406 [hep-lat]

    ADS  Google Scholar 

  244. T.W. Chiu et al. (JLQCD/TWQCD 08B), Topological susceptibility in (2+1)-flavor lattice QCD with overlap fermion. PoS LAT2008, 072 (2008). arXiv:0810.0085 [hep-lat]

    Google Scholar 

  245. F. Bernardoni, P. Hernandez, N. Garron, S. Necco, C. Pena (Bernardoni 10), Probing the chiral regime of N f =2 QCD with mixed actions. Phys. Rev. D 83, 054503 (2011). arXiv:1008.1870 [hep-lat]

    ADS  Google Scholar 

  246. S. Aoki et al. (JLQCD/TWQCD 07A), Topological susceptibility in two-flavor lattice QCD with exact chiral symmetry. Phys. Lett. B 665, 294–297 (2008). arXiv:0710.1130 [hep-lat]

    ADS  Google Scholar 

  247. K. Jansen, A. Shindler (ETM 09B), The epsilon regime of chiral perturbation theory with Wilson-type fermions. PoS LAT2009, 070 (2009). arXiv:0911.1931 [hep-lat]

    Google Scholar 

  248. A. Hasenfratz, R. Hoffmann, S. Schaefer (HHS 08), Low energy chiral constants from epsilon-regime simulations with improved Wilson fermions. Phys. Rev. D 78, 054511 (2008). arXiv:0806.4586 [hep-lat]

    ADS  Google Scholar 

  249. H. Fukaya et al. (JLQCD/TWQCD 07), Lattice study of meson correlators in the epsilon-regime of two-flavor QCD. Phys. Rev. D 77, 074503 (2008). arXiv:0711.4965 [hep-lat]

    ADS  Google Scholar 

  250. R. Baron et al. (ETM 11), Light hadrons from N f =2+1+1 dynamical twisted mass fermions. PoS LAT2010, 123 (2010). arXiv:1101.0518 [hep-lat]

    Google Scholar 

  251. P.A. Boyle et al. (RBC/UKQCD 08A), The pion’s electromagnetic form factor at small momentum transfer in full lattice QCD. J. High Energy Phys. 07, 112 (2008). arXiv:0804.3971 [hep-lat]

    ADS  Google Scholar 

  252. G. Colangelo, S. Dürr (CD 03), The pion mass in finite volume. Eur. Phys. J. C 33, 543–553 (2004). hep-lat/0311023

    Article  ADS  Google Scholar 

  253. S. Aoki et al. (JLQCD/TWQCD 09), Pion form factors from two-flavor lattice QCD with exact chiral symmetry. Phys. Rev. D 80, 034508 (2009). arXiv:0905.2465 [hep-lat]

    ADS  Google Scholar 

  254. S. Dürr, \(M_{\pi}^{2}\) versus m q : Comparing CP-PACS and UKQCD data to chiral perturbation theory. Eur. Phys. J. C 29, 383–395 (2003). hep-lat/0208051

    Article  ADS  Google Scholar 

  255. L. Del Debbio, L. Giusti, M. Lüscher, R. Petronzio, N. Tantalo (CERN-TOV 06), QCD with light Wilson quarks on fine lattices (I): first experiences and physics results. J. High Energy Phys. 02, 056 (2007). hep-lat/0610059

    Article  ADS  Google Scholar 

  256. N.H. Fuchs, H. Sazdjian, J. Stern, How to probe the scale of (anti-q q) in chiral perturbation theory. Phys. Lett. B 269, 183–188 (1991)

    ADS  Google Scholar 

  257. J. Stern, H. Sazdjian, N.H. Fuchs, What pi–pi scattering tells us about chiral perturbation theory. Phys. Rev. D 47, 3814–3838 (1993). hep-ph/9301244

    ADS  Google Scholar 

  258. S. Descotes-Genon, L. Girlanda, J. Stern, Paramagnetic effect of light quark loops on chiral symmetry breaking. J. High Energy Phys. 01, 041 (2000). hep-ph/9910537

    Article  ADS  Google Scholar 

  259. V. Bernard, S. Descotes-Genon, G. Toucas, Chiral dynamics with strange quarks in the light of recent lattice simulations. arXiv:1009.5066 [hep-ph]

  260. F.D.R. Bonnet, R.G. Edwards, G.T. Fleming, R. Lewis, D.G. Richards (LHP 04), Lattice computations of the pion form factor. Phys. Rev. D 72, 054506 (2005). hep-lat/0411028

    ADS  Google Scholar 

  261. D. Brommel et al. (QCDSF/UKQCD 06A), The pion form factor from lattice QCD with two dynamical flavours. Eur. Phys. J. C 51, 335–345 (2007). hep-lat/0608021

    Article  ADS  Google Scholar 

  262. S.R. Amendolia et al., A measurement of the space-like pion electromagnetic form factor. Nucl. Phys. B 277, 168 (1986)

    Article  ADS  Google Scholar 

  263. J. Bijnens, N. Danielsson, T.A. Lähde, Three-flavor partially quenched chiral perturbation theory at NNLO for meson masses and decay constants. Phys. Rev. D 73, 074509 (2006). hep-lat/0602003

    ADS  Google Scholar 

  264. J. Bijnens, Status of strong ChPT. PoS EFT09, 022 (2009). arXiv:0904.3713 [hep-ph]

    Google Scholar 

  265. E. Shintani et al. (JLQCD 08A), S-parameter and pseudo-Nambu–Goldstone boson mass from lattice QCD. Phys. Rev. Lett. 101, 242001 (2008). arXiv:0806.4222 [hep-lat]

    Article  ADS  Google Scholar 

  266. G.C. Branco, L. Lavoura, J.P. Silva, CP Violation, Int. Ser. Monogr. Phys., vol. 103 (Springer, Berlin, 1999), p. 536

    Google Scholar 

  267. G. Buchalla, A.J. Buras, M.E. Lautenbacher, Weak decays beyond leading logarithms. Rev. Mod. Phys. 68, 1125–1144 (1996). hep-ph/9512380

    Article  ADS  Google Scholar 

  268. A.J. Buras, Weak Hamiltonian, CP violation and rare decays, in Les Houches 1997, Probing the Standard Model of Particle Interactions, pt. 1 (1997), pp. 281–539. hep-ph/9806471

    Google Scholar 

  269. T. Inami, C.S. Lim, Effects of superheavy quarks and leptons in low-energy weak processes \(K_{L}\to\mu\bar{\mu}\), \(K^{+}\to\pi^{+}\nu\bar{\nu}\) and \(K^{0}\leftrightarrow\bar{K}^{0}\). Prog. Theor. Phys. 65, 297 (1981)

    Article  ADS  Google Scholar 

  270. C. Aubin, J. Laiho, R.S. Van de Water (Aubin 09), The neutral kaon mixing parameter B K from unquenched mixed-action lattice QCD. Phys. Rev. D 81, 014507 (2010). arXiv:0905.3947 [hep-lat]

    ADS  Google Scholar 

  271. J. Brod, M. Gorbahn, ε K at next-to-next-to-leading order: The charm-top-quark contribution. Phys. Rev. D 82, 094026 (2010). arXiv:1007.0684 [hep-ph]

    ADS  Google Scholar 

  272. U. Nierste, private communication, 2010

  273. K. Anikeev et al., B physics at the Tevatron: Run II and beyond. hep-ph/0201071

  274. U. Nierste, Three lectures on meson mixing and CKM phenomenology, in Dubna 2008, Heavy Quark Physics HQP08 (2008), pp. 1–39. arXiv:0904.1869 [hep-ph]

    Google Scholar 

  275. A.J. Buras, D. Guadagnoli, Correlations among new CP violating effects in ΔF=2 observables. Phys. Rev. D 78, 033005 (2008). arXiv:0805.3887 [hep-ph]

    ADS  Google Scholar 

  276. A.J. Buras, D. Guadagnoli, G. Isidori, On ε K beyond lowest order in the operator product expansion. Phys. Lett. B 688, 309–313 (2010). arXiv:1002.3612 [hep-ph]

    ADS  Google Scholar 

  277. D. Becirevic et al., \(K^{0} \bar{K}^{0}\) mixing with Wilson fermions without subtractions. Phys. Lett. B 487, 74–80 (2000). hep-lat/0005013

    ADS  Google Scholar 

  278. P. Dimopoulos et al. (ALPHA 06), A precise determination of B K in quenched QCD. Nucl. Phys. B 749, 69–108 (2006). hep-ph/0601002

    Article  ADS  Google Scholar 

  279. P.H. Ginsparg, K.G. Wilson, A remnant of chiral symmetry on the lattice. Phys. Rev. D 25, 2649 (1982)

    ADS  Google Scholar 

  280. M. Della Morte et al. (ALPHA 04), Computation of the strong coupling in QCD with two dynamical flavours. Nucl. Phys. B 713, 378–406 (2005). hep-lat/0411025

    Article  ADS  Google Scholar 

  281. S. Aoki et al. (JLQCD 08), B K with two flavors of dynamical overlap fermions. Phys. Rev. D 77, 094503 (2008). arXiv:0801.4186 [hep-lat]

    ADS  Google Scholar 

  282. J. Kim, C. Jung, H.-J. Kim, W. Lee, S.R. Sharpe (SWME 11), Finite volume effects in B K with improved staggered fermions. arXiv:1101.2685 [hep-lat]

  283. Y. Aoki et al. (RBC/UKQCD 10B), Continuum limit of B K from 2+1 flavor domain wall QCD. arXiv:1012.4178 [hep-lat]

  284. T. Bae et al. (SWME 10), B K using HYP-smeared staggered fermions in N f =2+1 unquenched QCD. Phys. Rev. D 82, 114509 (2010). arXiv:1008.5179 [hep-lat]

    ADS  Google Scholar 

  285. D.J. Antonio et al. (RBC/UKQCD 07A), Neutral kaon mixing from 2+1 flavor domain wall QCD. Phys. Rev. Lett. 100, 032001 (2008). hep-ph/0702042

    Article  ADS  Google Scholar 

  286. E. Gamiz et al. (HPQCD/UKQCD 06), Unquenched determination of the kaon parameter B K from improved staggered fermions. Phys. Rev. D 73, 114502 (2006). hep-lat/0603023

    ADS  Google Scholar 

  287. M. Constantinou et al. (ETM 10A), BK-parameter from N f =2 twisted mass lattice QCD. Phys. Rev. D 83, 014505 (2011). arXiv:1009.5606 [hep-lat]

    ADS  Google Scholar 

  288. Y. Aoki et al. (RBC 04), Lattice QCD with two dynamical flavors of domain wall fermions. Phys. Rev. D 72, 114505 (2005). hep-lat/0411006

    ADS  Google Scholar 

  289. J.M. Flynn, F. Mescia, A.S.B. Tariq (UKQCD 04), Sea quark effects in B K from N f =2 clover-improved Wilson fermions. J. High Energy Phys. 11, 049 (2004). hep-lat/0406013

    Article  Google Scholar 

  290. A. Hasenfratz, F. Knechtli, Flavor symmetry and the static potential with hypercubic blocking. Phys. Rev. D 64, 034504 (2001). hep-lat/0103029

    ADS  Google Scholar 

  291. Y. Aoki et al., Non-perturbative renormalization of quark bilinear operators and B K using domain wall fermions. Phys. Rev. D 78, 054510 (2008). arXiv:0712.1061 [hep-lat]

    ADS  Google Scholar 

  292. V. Bertone et al. (ETM 09D), Kaon oscillations in the Standard Model and beyond using N f =2 dynamical quarks. PoS LAT2009, 258 (2009). arXiv:0910.4838 [hep-lat]

    Google Scholar 

  293. P. Dimopoulos, H. Simma, A. Vladikas (ALPHA 09), Quenched B K -parameter from Osterwalder-Seiler tmQCD quarks and mass-splitting discretization effects. J. High Energy Phys. 07, 007 (2009). arXiv:0902.1074 [hep-lat]

    Google Scholar 

  294. Y. Nakamura, S. Aoki, Y. Taniguchi, T. Yoshie (CP-PACS 08), Precise determination of B K and light quark masses in quenched domain-wall QCD. Phys. Rev. D 78, 034502 (2008). arXiv:0803.2569 [hep-lat]

    ADS  Google Scholar 

  295. P. Dimopoulos et al. (ALPHA 07), Flavour symmetry restoration and kaon weak matrix elements in quenched twisted mass QCD. Nucl. Phys. B 776, 258–285 (2007). hep-lat/0702017

    Article  ADS  Google Scholar 

  296. S. Aoki et al. (JLQCD 97), Kaon B parameter from quenched lattice QCD. Phys. Rev. Lett. 80, 5271–5274 (1998). hep-lat/9710073

    Article  ADS  Google Scholar 

  297. K.G. Wilson, Confinement of quarks. Phys. Rev. D 10, 2445–2459 (1974)

    Article  ADS  Google Scholar 

  298. M. Lüscher, P. Weisz, On-shell improved lattice gauge theories. Commun. Math. Phys. 97, 59 (1985)

    Article  ADS  MATH  Google Scholar 

  299. Y. Iwasaki, Renormalization group analysis of lattice theories and improved lattice action: two-dimensional nonlinear O(N) sigma model. Nucl. Phys. B 258, 141–156 (1985)

    Article  ADS  Google Scholar 

  300. T. Takaishi, Heavy quark potential and effective actions on blocked configurations. Phys. Rev. D 54, 1050–1053 (1996)

    ADS  Google Scholar 

  301. P. de Forcrand et al., Renormalization group flow of SU(3) lattice gauge theory: numerical studies in a two coupling space. Nucl. Phys. B 577, 263–278 (2000). hep-lat/9911033

    Article  ADS  Google Scholar 

  302. G.P. Lepage, P.B. Mackenzie, On the viability of lattice perturbation theory. Phys. Rev. D 48, 2250–2264 (1993). hep-lat/9209022

    ADS  Google Scholar 

  303. M. Lüscher, S. Sint, R. Sommer, P. Weisz, U. Wolff, Non-perturbative O(a) improvement of lattice QCD. Nucl. Phys. B 491, 323–343 (1997). hep-lat/9609035

    Article  ADS  Google Scholar 

  304. L. Susskind, Lattice fermions. Phys. Rev. D 16, 3031–3039 (1977)

    ADS  Google Scholar 

  305. K. Orginos, D. Toussaint, R.L. Sugar (MILC 99), Variants of fattening and flavor symmetry restoration. Phys. Rev. D 60, 054503 (1999). hep-lat/9903032

    ADS  Google Scholar 

  306. E. Follana et al. (HPQCD 06), Highly improved staggered quarks on the lattice, with applications to charm physics. Phys. Rev. D 75, 054502 (2007). hep-lat/0610092

    ADS  Google Scholar 

  307. M. Creutz, Why rooting fails. PoS LAT2007, 007 (2007). arXiv:0708.1295 [hep-lat]

    Google Scholar 

  308. P. Hasenfratz, V. Laliena, F. Niedermayer, The index theorem in QCD with a finite cut-off. Phys. Lett. B 427, 125–131 (1998). hep-lat/9801021

    ADS  Google Scholar 

  309. M. Lüscher, Exact chiral symmetry on the lattice and the Ginsparg–Wilson relation. Phys. Lett. B 428, 342–345 (1998). hep-lat/9802011

    ADS  Google Scholar 

  310. D.B. Kaplan, A Method for simulating chiral fermions on the lattice. Phys. Lett. B 288, 342–347 (1992). hep-lat/9206013

    MathSciNet  ADS  Google Scholar 

  311. V. Furman, Y. Shamir, Axial symmetries in lattice QCD with Kaplan fermions. Nucl. Phys. B 439, 54–78 (1995). hep-lat/9405004

    Article  ADS  Google Scholar 

  312. H. Neuberger, Exactly massless quarks on the lattice. Phys. Lett. B 417, 141–144 (1998). hep-lat/9707022

    MathSciNet  ADS  Google Scholar 

  313. P. Hasenfratz et al., The construction of generalized Dirac operators on the lattice. Int. J. Mod. Phys. C 12, 691–708 (2001). hep-lat/0003013

    Article  MathSciNet  ADS  Google Scholar 

  314. P. Hasenfratz, S. Hauswirth, T. Jorg, F. Niedermayer, K. Holland, Testing the fixed-point QCD action and the construction of chiral currents. Nucl. Phys. B 643, 280–320 (2002). hep-lat/0205010

    Article  ADS  Google Scholar 

  315. C. Gattringer, A new approach to Ginsparg–Wilson fermions. Phys. Rev. D 63, 114501 (2001). hep-lat/0003005

    ADS  Google Scholar 

  316. A. Hasenfratz, R. Hoffmann, S. Schaefer, Hypercubic smeared links for dynamical fermions. J. High Energy Phys. 05, 029 (2007). hep-lat/0702028

    Article  ADS  Google Scholar 

  317. C. Morningstar, M.J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD. Phys. Rev. D 69, 054501 (2004). hep-lat/0311018

    ADS  Google Scholar 

  318. S. Dürr et al. (BMW 08A), Scaling study of dynamical smeared-link clover fermions. Phys. Rev. D 79, 014501 (2009). arXiv:0802.2706 [hep-lat]

    Google Scholar 

  319. S. Capitani, S. Dürr, C. Hoelbling, Rationale for UV-filtered clover fermions. J. High Energy Phys. 11, 028 (2006). hep-lat/0607006

    Article  ADS  Google Scholar 

  320. R. Sommer, A new way to set the energy scale in lattice gauge theories and its applications to the static force and α s in SU(2) Yang-Mills theory. Nucl. Phys. B 411, 839–854 (1994). hep-lat/9310022

    Article  ADS  Google Scholar 

  321. C.W. Bernard et al., The static quark potential in three flavor QCD. Phys. Rev. D 62, 034503 (2000). hep-lat/0002028

    Article  ADS  Google Scholar 

  322. R. Arthur, P.A. Boyle (RBC Collaboration), Step scaling with off-shell renormalisation. arXiv:1006.0422 [hep-lat]

  323. C. Bernard et al. (MILC 07), Status of the MILC light pseudoscalar meson project. PoS LAT2007, 090 (2007). arXiv:0710.1118 [hep-lat]

    Google Scholar 

  324. G. Colangelo, S. Dürr, C. Haefeli (CDH 05), Finite volume effects for meson masses and decay constants. Nucl. Phys. B 721, 136–174 (2005). hep-lat/0503014

    Article  ADS  MATH  Google Scholar 

  325. G. Herdoiza, private communication, 2011

  326. R. Brower, S. Chandrasekharan, J.W. Negele, U. Wiese, QCD at fixed topology. Phys. Lett. B 560, 64–74 (2003). hep-lat/0302005

    Article  ADS  MATH  Google Scholar 

  327. O. Bär, S. Necco, S. Schaefer, The epsilon regime with Wilson fermions. J. High Energy Phys. 03, 006 (2009). arXiv:0812.2403 [hep-lat]

    Article  Google Scholar 

  328. T. Bunton, F.-J. Jiang, B. Tiburzi, Extrapolations of lattice meson form factors. Phys. Rev. D 74, 034514 (2006). hep-lat/0607001

    Article  ADS  Google Scholar 

  329. B. Borasoy, R. Lewis, Volume dependences from lattice chiral perturbation theory. Phys. Rev. D 71, 014033 (2005). hep-lat/0410042

    Article  ADS  Google Scholar 

  330. S. Aoki, H. Fukaya, S. Hashimoto, T. Onogi, Finite volume QCD at fixed topological charge. Phys. Rev. D 76, 054508 (2007). arXiv:0707.0396 [hep-lat]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to G. Colangelo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

FLAG working group of FLAVIANET., Colangelo, G., Dürr, S. et al. Review of lattice results concerning low-energy particle physics. Eur. Phys. J. C 71, 1695 (2011). https://doi.org/10.1140/epjc/s10052-011-1695-1

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1695-1

Keywords

Navigation