Skip to main content
Log in

Ratchet effect of interacting active particles induced by cross-correlated noises

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Through theoretical analysis and numerical simulation, we investigate ratchet effect of active particles in biased velocity potential in the presence of cross-correlated noises. For a single active particle, the mean velocity and mobility suggest that cross-correlated noises can lead to the ratchet effect. The finding is interpreted by the time series, the rectified potential, mean square displacement, and the diffusion coefficient. The diffusion displays hyperdiffusion, superdiffusion, and normal diffusion for different conditions and time intervals. The crossover times that separates these stages can be controlled by cross-correlated noises and static force. For interacting active particles, we find through time series and average velocity that the weak interaction between particles, which leads to weak collective motion, can enhance the ratchet effect. However, the strong interaction, which results in strong collective motion, can weaken, even eliminate it. Our results may provide a valuable way to control the transport of active particles through the ratchet effect.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The paper contents are purely theoretical, and did not need any date.]

References

  1. F. Schweitzer, W. Ebeling, B. Tilch, Phys. Rev. Lett. 80, 5044–5047 (1998)

    Article  ADS  Google Scholar 

  2. W. Ebeling, F. Schweitzer, B. Tilch, BioSystems 49, 17–29 (1999)

    Article  Google Scholar 

  3. W. Ebeling, Condens. Matter Phys. 7, 539–556 (2004)

    Article  Google Scholar 

  4. P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. Spec. Top. 202, 1–162 (2012)

    Article  Google Scholar 

  5. B. Lindner, E.M. Nicola, Phys. Rev. Lett. 101, 190603 (2008)

    Article  ADS  Google Scholar 

  6. D. Wu, S.Q. Zhu, Phys. Rev. E 90, 012131 (2014)

    Article  ADS  Google Scholar 

  7. B.Q. Ai, Y.F. He, W.R. Zhong, J. Chem. Phys. 141, 194111 (2014)

    Article  Google Scholar 

  8. D. Wu, S.Q. Zhu, Phys. Rev. E 85, 061101 (2012)

    Article  ADS  Google Scholar 

  9. L.F. Cugliandolo, G. Gonnella, A. Suma, Chaos Solitons Fractals 81, 556–566 (2015)

    Article  ADS  Google Scholar 

  10. T. GrandPre, D.T. Limmer, Phys. Rev. E 98, 060601(R) (2018)

    Article  ADS  Google Scholar 

  11. R. Eichhorn, P. Reimann, P. Hänggi, Phys. Rev. Lett. 88, 190601 (2002)

    Article  ADS  Google Scholar 

  12. J. Spiechowicz, P. Hänggi, J. Łuczka, New J. Phys. 21, 083029 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  13. J. Spiechowicz, P. Hänggi, J. Łuczka, Phys. Rev. E 90, 032104 (2014)

    Article  ADS  Google Scholar 

  14. A. Słapik, J. Łuczka, P. Hänggi, J. Spiechowicz, Phys. Rev. Lett. 122, 070602 (2019)

    Article  ADS  Google Scholar 

  15. A. Słapik, J. Łuczka, J. Spiechowicz, Phys. Rev. Appl. 12, 054002 (2020)

    Article  ADS  Google Scholar 

  16. L. Machura, M. Kostur, P. Talkner, J. Łuczka, P. Hänggi, Phys. Rev. Lett. 98, 040601 (2007)

    Article  ADS  Google Scholar 

  17. F. Cecconi, A. Puglisi, A. Sarracino, A. Vulpiani, J. Phys. Condens. Matter 30, 264002 (2018)

    Article  ADS  Google Scholar 

  18. K.Z. Xiong, Z.H. Liu, C.H. Zeng, B.W. Li, Natl. Sci. Rev. 7, 270–277 (2020)

    Article  Google Scholar 

  19. R. Eichhorn, P. Reimann, B. Cleuren, C. Van den Broeck, Chaos 15, 026113 (2005)

    Article  ADS  Google Scholar 

  20. C.O. Reichhardt, C. Reichhardt, Annu. Rev. Condens. Matter Phys. 8, 51–75 (2017)

    Article  ADS  Google Scholar 

  21. J. Spiechowicz, J. Łuczka, P. Hänggi, J. Stat. Mech. P02044 (2013)

  22. M. Kostur, J. Łuczka, P. Hänggi, Phys. Rev. E 80, 051121 (2009)

    Article  ADS  Google Scholar 

  23. Y. Luo, C. Zeng, B.-Q. Ai, Phys. Rev. E 102, 042114 (2020)

    Article  ADS  Google Scholar 

  24. Y. Luo, C. Zeng, Chaos 30, 053115 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  25. Y.L. Ou, C.T. Hu, J.C. Wu, B.Q. Ai, Physica A 439, 1–6 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. C.J. Wang, K.L. Yang, C.Y. Du, Physica A 470, 261–274 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. F.Y. Deng, Y.H. Luo, Y.W. Fang, F.Z. Yang, C.H. Zeng, Chaos Solitons and Fractals 147, 110959 (2021)

    Article  Google Scholar 

  28. J.H. Li, Z.Q. Huang, Phys. Rev. E 57, 3917 (1998)

    Article  ADS  Google Scholar 

  29. C.H. Zeng, H. Wang, L.R. Nie, Chaos 22, 033125 (2012)

    Article  ADS  Google Scholar 

  30. L. Zhang, W.B. Zheng, F. Xie, A.G. Song, Phys. Rev. E 96, 052203 (2017)

    Article  ADS  Google Scholar 

  31. C.H. Zeng, J.K. Zeng, F. Liu, H. Wang, Sci. Rep. 6, 19591 (2016)

    Article  ADS  Google Scholar 

  32. L. Guan, Y.W. Fang, K.Z. Li, C.H. Zeng, F.Z. Yang, Physica A 505, 716–728 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  33. Y.W. Fang, Y.H. Luo, Z.Q. Ma, C.H. Zeng, Physica A 564, 125503 (2021)

    Article  Google Scholar 

  34. J.W.S. Rayleigh, The Theory of Sound (Mac-Millan, London, 1894)

    MATH  Google Scholar 

  35. H. Helmholtz, On the Sensations of Tone (Dover Publications, New York, 1954)

  36. B. Lindner, E.M. Nicola, Eur. Phys. J. Spec. Top. 157, 43–52 (2008)

    Article  Google Scholar 

  37. R. Rozenfeld, J. Łuczka, P. Talkner, Phys. Lett. A 249, 409–414 (1998)

    Article  ADS  Google Scholar 

  38. J. Łuczka, P. Talkner, P. Hänggi, Physica A 278, 18–31 (2000)

    Article  ADS  Google Scholar 

  39. A. Vanossi, N. Manini, M. Urbakh, S. Zapperi, E. Tosatti, Rev. Mod. Phys. 85, 529–552 (2013)

    Article  ADS  Google Scholar 

  40. P. Romanczuk, L. Schimansky-Geier, Phys. Rev. Lett. 106, 230601 (2011)

    Article  ADS  Google Scholar 

  41. B.Q. Ai, X.J. Wang, G.T. Liu, L.G. Liu, Phys. Rev. E 67(2), 022903 (2003)

    Article  ADS  Google Scholar 

  42. J.P. Laval, B. Dubrulle, S. Nazarenko, Phys. Fluids 13, 1995 (2001)

    Article  ADS  Google Scholar 

  43. A.K. Aringazin, Phys. Rev. E 70, 036301 (2004)

    Article  ADS  Google Scholar 

  44. H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer, Berlin, 1992)

    MATH  Google Scholar 

  45. R.F. Fox, Phys. Rev. A 34, 4525 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  46. P. Hänggi, T.T. Mroczkowski, F. Moss, P.V.E. McClintock, Phys. Rev. A 32, 695 (1985)

    Article  ADS  Google Scholar 

  47. D.J. Wu, L. Cao, S.Z. Ke, Phys. Rev. E 50, 2496 (1994)

    Article  ADS  Google Scholar 

  48. A.C. Brańka, D.M. Heyes, Phys. Rev. E 60, 2381 (1999)

    Article  ADS  Google Scholar 

  49. A. Lang, C. Schwab, Ann. Appl. Probab. 25, 3047 (2015)

    Article  MathSciNet  Google Scholar 

  50. J. Spiechowicz, J. Łuczka, Chaos 29, 013105 (2019)

    Article  ADS  Google Scholar 

  51. J. Spiechowicz, J. Łuczka, Phys. Rev. E 91, 062104 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  52. J. Spiechowicz, J. Łuczka, P. Hänggi, Sci. Rep. 6, 30948 (2016)

    Article  ADS  Google Scholar 

  53. J. Spiechowicz, J. Łuczka, Sci. Rep. 7, 16451 (2017)

    Article  ADS  Google Scholar 

  54. S. Sundararajan, P.E. Lammert, A.W. Zudans, V.H. Crespi, A. Sen, Nano Lett. 8, 1271 (2008)

    Article  ADS  Google Scholar 

  55. P. Tierno, R. Albalat, F. Sagúes, Small 6, 1749–1752 (2010)

    Article  Google Scholar 

  56. K. Drescher, J. Dunkel, L.H. Cisneros, S. Ganguly, R.E. Goldstein, Proc. Natl. Acad. Sci. USA 108, 10940–10945 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Yunnan Fundamental Research Projects (Grant nos. 2019FI002 and 202101AS070018), Yunnan Fundamental Research Projects (Grant no. 202101AV070015), Yunnan Province Ten Thousand Talents Plan Young & Elite Talents Project, and Yunnan Province Computational Physics and Applied Science and Technology Innovation Team.

Author information

Authors and Affiliations

Authors

Contributions

YF has carried out all the calculations and prepared the initial form of the manuscript. YL revised the calculations and polished the the manuscript. TH analyzed the numerical data and revised the manuscript. CZ proposed the idea. All authors discussed the paper results.

Corresponding authors

Correspondence to Yuhui Luo or Chunhua Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Luo, Y., Huang, T. et al. Ratchet effect of interacting active particles induced by cross-correlated noises. Eur. Phys. J. B 95, 77 (2022). https://doi.org/10.1140/epjb/s10051-022-00335-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00335-8

Navigation