Skip to main content
Log in

Spin-imbalanced homogeneous atomic fermi gas in two dimensions

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Two-dimensional spin-imbalanced homogeneous gas trapped in a hard box is studied within the static fluctuation approximation (SFA). The effects of temperature, tarp size, interaction strength \(g_{0}\) and polarization on the thermodynamic properties are investigated. In the quantum regime, the energy U is found to be a parabolic function of T. The heat capacity and entropy increase with the width of the box indicating that these quantities are non-intensive quantities for finite size system, whereas the chemical potential \(\mu ~\)and U decrease as the box width increases. In addition, U increases linearly with \(g_{0}\) in the repulsive interaction case and decreases as the magnitude of \(g_{0}\) of attractive potential increases. The results are compared to those obtained within the Diffusion Monte Carlo method with Fixed Node approximation, the self-consistent fluctuation theory, the virial expansion, and other experimental results. Our results for \(\mu \) are compared to the theoretical results obtained by the virial-expansion method for a gas in free space, as well as to the experimental results for a gas in a harmonic trap. We have found that the results depend on the type of trap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data has been listed.]

References

  1. E.R. Anderson, J.E. Drut, Phys. Rev. Lett. 115, 115301 (2015)

    Article  ADS  Google Scholar 

  2. K. Hueck, N. Luick, L. Sobirey, J. Siegl, Th. Lompe, H. Moritz, Phys. Rev. Lett. 120, 060402 (2018)

    Article  ADS  Google Scholar 

  3. D. Mitra, P.T. Brown, P. Schau, S.S. Kondov, W.S. Bakr, Phys. Rev. Lett. 117, 093601 (2016)

    Article  ADS  Google Scholar 

  4. G. Bertaina, Eur. Phys. J. Spec. Top. 217, 153–162 (2013)

    Article  Google Scholar 

  5. W. Ong, Ch. Cheng, I. Arakelyan, J.E. Thomas, Phys. Rev. Lett. 114, 110403 (2015)

    Article  ADS  Google Scholar 

  6. M. Randeria, J.-M. Duan, L.-Y, Shieh, Phys. Rev. Lett. 62, 981 (1989)

  7. M. Bauer, M.M. Parish, T. Enss, Phys. Rev. Lett. 112, 135302 (2014)

    Article  ADS  Google Scholar 

  8. B.C. Mulkerin, X. Liu, H. Hu, Phys. Rev. A 102, 013313 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  9. I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80 (2008) 885

    Article  ADS  Google Scholar 

  10. M. Barth, J. Hofmann, Phys. Rev. A 89, 013614 (2014)

    Article  ADS  Google Scholar 

  11. B. Sundar, J.A. Fry, M.C. Revelle, R.G. Hulet, K.R.A. Hazzard, Phys. Rev. A 102, 033311 (2020)

    Article  ADS  Google Scholar 

  12. Ch. Wu, R. Boyack, K. Levin, Phys. Rev. A 94, 033604 (2016)

    Article  ADS  Google Scholar 

  13. F. Wu, J. Hu, L. He, X. Liu, H. Hu, Phys. Rev. A. 101, 043607 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  14. B.C. Mulkerin, K. Fenech, P. Dyke, C.J. Vale, X. Liu, H. Hu, Phys. Rev. A 92, 063636 (2015)

    Article  ADS  Google Scholar 

  15. L. Rammelmuller, W.J. Porter, J.E. Drut, Phys. Rev. A 93, 033639 (2016)

    Article  ADS  Google Scholar 

  16. G. Bertaina, S. Giorgini, Phys. Rev. Lett. 106, 110403 (2011)

    Article  ADS  Google Scholar 

  17. K. Fenech, P. Dyke, T. Peppler, M.G. Lingham, S. Hoinka, H. Hu, C.J. Vale, Phys. Rev. Lett. 116, 045302 (2016)

    Article  ADS  Google Scholar 

  18. M. K. Al-Sugheir, and H. B. Ghassib, Int. J. Theor. Phys. 41 (2002) 705–719

    Article  Google Scholar 

  19. M. K. Al-Sugheir, H.B. Ghassib, and R.R. Nigmatullin, Int. J. Theor. Phys. 40 (2001) 1033

    Article  Google Scholar 

  20. M. K. Al-Sugheir, Int. J. Theor. Phys. 43 (2004) 1527–1539

    Article  Google Scholar 

  21. M. K. Al-Sugheir, F.M.Al-Dweri, G.Alna’washi, and M.G.Shatnawi. Phys. B, 408 (2013) 151–157

    Article  ADS  Google Scholar 

  22. H. A. Al-Khzon, M.K. Al-Sugheir, and H.B. Ghassib, Can. J. Phys. 94 (2016) 47

    Article  ADS  Google Scholar 

  23. M. K. Al-Sugheir, F.M. Al-Dweri, G.Alna’washi, and M.G.Shatnawi. Phys. B, 408 (2013) 151–157

    Article  ADS  Google Scholar 

  24. H. A. Al-Khzon, and M. K. Al-Sugheir, Phys. B 571 (2019) 18–25

    Article  ADS  Google Scholar 

  25. M.K. Al-Sugheir, G.Alna’washi, H.B.Ghassib, A.Sandouqa, Phys. B 407 (2012) 2313–2320

    Article  ADS  Google Scholar 

  26. M.K. Al-Sugheir, H.B. Ghassib, M. Awawdeh, Phys. Rev. A 84, 013617 (2011)

    Article  ADS  Google Scholar 

  27. H. Caldas, A L. Mota, R. L. S Farias and L. A. Souza, J. Stat. Mech, Theory. Exp. 1210 (2012) P10019

    Article  Google Scholar 

  28. MX. Na, F. Marsiglio, Am. J. Phys. 85 (2017) 769–782

    Article  ADS  Google Scholar 

  29. E. Vogt, M. Feld, B. Frohlich, D. Pertot, M. Koschorreck, M. Köhl, Phys. Rev. Lett. 108, 070404 (2012)

    Article  ADS  Google Scholar 

  30. M. Holten, L. Bayha, A.C. Klein, P.A. Murthy, P.M. Preiss, and S. Jochim Phys. Rev. Lett. 121, 120401 (2018)

    Article  ADS  Google Scholar 

  31. E. Taylor, M. Randeria, Phys. Rev. Lett. 109, 135301 (2012)

    Article  ADS  Google Scholar 

  32. X. Liu, H. Hu, P.D. Drummond, Phys. Rev. B 82, 054524 (2010)

    Article  ADS  Google Scholar 

  33. G.H. Bordbar, M. Bigdeli, Phys. Rev. C 75, 045804 (2007)

    Article  ADS  Google Scholar 

  34. G.H. Bordbar, M. Bigdeli, Phys. Rev. C 76, 035803 (2007)

    Article  ADS  Google Scholar 

  35. M.K. Al-Sugheir, M.W.Edmairi, H.B.Ghassib, S.M.Alnemrat, Nucl. Phys. A 984 (2019) 133

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Two of the authors (H. A. Al-Khzon and M. K. Al-Sugheir) worked together at each stage of the work.

Corresponding author

Correspondence to H. A. Al-Khzon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Khzon, H.A., Al-Sugheir, M.K. Spin-imbalanced homogeneous atomic fermi gas in two dimensions. Eur. Phys. J. B 94, 191 (2021). https://doi.org/10.1140/epjb/s10051-021-00198-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00198-5

Navigation