Skip to main content
Log in

The effect of disorder on local electron temperature in quantum Hall systems

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The local electron temperature distribution is calculated considering a two dimensional electron system in the integer quantum Hall regime in presence of disorder and uniform perpendicular magnetic fields. We solve thermo-hydrodynamic equations to obtain the spatial distribution of the local electron temperature in the linear-response regime. It is observed that, the variations of electron temperature exhibit an antisymmetry regarding the center of the sample in accordance with the location of incompressible strips. To understand the effect of sample mobility on the local electron temperature we impose a disorder potential calculated within the screening theory. Here, long range potential fluctuations are assumed to simulate cumulative disorder potential depending on the impurity atoms. We observe that the local electron temperature strongly depends on the number of impurities in narrow samples.

Graphic abstract

The electron temperature \(T_e\) versus position calculated for different values of the modulation potential \(V_0\). The calculations are done at \(T_\mathrm{L} = 0.04 \,E_F^0/k_B\) lattice temperature considering impurity \(N_l = 6600\) and repeated for three different values of magnetic field \(\hbar \omega _c/E_F^0 = 0.80\), 0.85 and 0.90. The insets show the enlarged region for the left side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment:This is a theoretical study and no experimental data has been listed.]

References

  1. K. von Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494–497 (1980)

    Article  ADS  Google Scholar 

  2. D. C. Tsui, H. L. Stormer, A. C. Gossard, Phys. Rev. Lett. 48, 1559–1562 (1982)

    Article  ADS  Google Scholar 

  3. L. Schweitzer, B. Kramer, A. MacKinnon, Z. Physik B 59, 379–384 (1985)

    Article  ADS  Google Scholar 

  4. B. Kramer, S. Kettemann and T. Ohtsuki, Physica E 20, 172–187 (2003)

    Article  ADS  Google Scholar 

  5. D. B. Chklovskii, B. I. Shklovskii, L. I. Glazman, Phys. Rev. B 46, 4026–4034 (1992)

    Article  ADS  Google Scholar 

  6. K. Lier, R. R. Gerhardts, Phys. Rev. B 50, 7757–7767 (1994)

    Article  ADS  Google Scholar 

  7. J. H. Oh, R. R. Gerhardts, Phys. Rev. B 56,13519–13528 (1997)

    Article  ADS  Google Scholar 

  8. M. M. Fogler, B. I. Shklovskii, Phys. Rev. B. 50, 1656–1662 (1994)

    Article  ADS  Google Scholar 

  9. S. E. Gulebaglan, G. Oylumluoglu, U. Erkaslan, A. Siddiki, I. Sokmen, Physica E 44, 1495–1502 (2012)

    Article  ADS  Google Scholar 

  10. N. B. Yurdasan, K. Akgungor, A. Siddiki, I. Sokmen, Physica E 44, 1367–1371 (2012)

    Article  ADS  Google Scholar 

  11. N. B. Yurdasan, A. Siddiki, I. Sokmen, Acta Physica Polonica A 123, 314–316 (2013)

    Article  ADS  Google Scholar 

  12. H. Akera, J. Phys. Soc. Jpn. 69, 3174–3177 (2000)

    Article  ADS  Google Scholar 

  13. H. Akera, J. Phys. Soc. Jpn. 70, 1468–1471 (2001)

    Article  ADS  Google Scholar 

  14. H. Akera, J. Phys. Soc. Jpn. 71, 228–236 (2002)

    Article  ADS  Google Scholar 

  15. H. Akera, H. Suzuura, J. Phys. Soc. Jpn. 74,997–1005 (2005)

    Article  ADS  Google Scholar 

  16. S. Kanamaru, H. Suzuura, H. Akera, J. Phys. Soc. Jpn. 75, 064701 (2006)

    Article  ADS  Google Scholar 

  17. A. Siddiki, S. Kraus and R. R. Gerhardts, Physica E 34, 136–139 (2006)

    Article  ADS  Google Scholar 

  18. A. Siddiki, S.E. Gulebaglan, N. B. Yurdasan, G. Bilgec, A. Yildiz, Europhys. Lett 92, 67010 (2010)

    Article  ADS  Google Scholar 

  19. K. Guven, R. R. Gerhardts, Phys. Rev. B 67, 115327 (2003)

    Article  ADS  Google Scholar 

  20. A. Siddiki, R. R. Gerhardts, Phys. Rev. B 70, 195335 (2004)

    Article  ADS  Google Scholar 

  21. R. R. Gerhardts, Phys. Status Solidi B (b) 245, 378–392 (2008)

    Article  ADS  Google Scholar 

  22. F. Dahlem, E. Ahlswede, J. Weis, K. von Klitzing, Phys. Rev. B 82, 121305(R) (2010)

    Article  ADS  Google Scholar 

  23. M.E. Suddards, A. Baumgartner, M. Henini, C.J. Mellor1, New J. Phys., 14, 083015 (2012)

  24. A. Siddiki, R. R. Gerhardts, J. Mod. Phys. B 18, 3541–3544 (2004)

    Article  ADS  Google Scholar 

  25. R.R. Gerhardts, Physica E 85, 38–46 (2017)

    Article  ADS  Google Scholar 

  26. R. R. Gerhardts, New J. Phys. 21, 073007 (2019)

    Article  ADS  Google Scholar 

  27. A. Siddiki, F. Marquardt, Phys. Rev. B 75, 045325 (2007)

    Article  ADS  Google Scholar 

  28. A. Siddiki, R. R. Gerhardts, J. Mod. Phys. B 21, 1362–1371 (2007)

    Article  ADS  Google Scholar 

  29. J. Horas, A. Siddiki, J. Moser, W. Wegscheider, S. Ludwig, Physica E 40, 1130–1132 (2008)

    Article  ADS  Google Scholar 

  30. A. Siddiki, J. Horas, J. Moser, W. Wegscheider, S. Ludwig, Europhys. Lett 88, 17007 (2009)

    Article  ADS  Google Scholar 

  31. R.J. Haug, Kv Klitzing, K. Ploog, Phys. Rev. B 35, 5933 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazli Boz Yurdasan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurdasan, N.B., Gulebaglan, S.E. & Siddiki, A. The effect of disorder on local electron temperature in quantum Hall systems. Eur. Phys. J. B 94, 10 (2021). https://doi.org/10.1140/epjb/s10051-020-00007-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-020-00007-5

Navigation