Skip to main content
Log in

Spin transport properties of anisotropic Heisenberg antiferromagnet on honeycomb lattice in the presence of magnetic field

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We have addressed the spin conductivity of a two-dimensional anisotropic antiferromagnet on honeycomb lattice in the presence of a longitudinal magnetic field. A spatial anisotropy in the form of a weak Dzyaloshinskii-Moriya interaction is considered in the model Hamiltonian. Next nearest neighbor exchange coupling has been added to the model Hamiltonian. We have investigated both dynamical and static spin conductivities in terms of the excitation spectrum by means of a hard core bosonic representation. The effects of next-nearest-neighbor coupling and the Dzyaloshinskii-Moriya interaction on the spin transport properties have also been studied via the bosonic model by a Green’s function approach. We have found the temperature dependence of static spin conductivity in the field induced gapped spin-polarized phase for various magnetic field and anisotropy parameters. Furthermore we have studied the magnetic field dependence of the static spin conductivity for various Dzyaloshinskii-Moriya interaction strength and the frequency dependence of the dynamical spin conductivity for various next nearest neighbor coupling constants. We find that the peak in the static spin conductivity moves to higher temperature upon increasing the magnetic field at fixed anisotropy parameter. The static spin conductivity is found to be monotonically decreasing with magnetic field due to increase of the energy gap in the excitation spectrum. Furthermore we have studied the temperature dependence of the spin conductivity for different magnetic field and various next nearest neighbor coupling constants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Hess, Eur. Phys. J. Special Topics 151, 135 (2007)

    ADS  Google Scholar 

  2. F. Heidrich-Meisner, A. Honecker, W. Brenig, Eur. Phys. J. Special Topics 151, 135 (2007)

    ADS  Google Scholar 

  3. R. Okuma et al., Nat. Commun. 10, 1229 (2019)

    ADS  Google Scholar 

  4. S.A. Zvygain, D. Graf, T. Sakurai, S. Kimura, H. Nojiri, J. Wosnitza, H. Ohta, T. Ono, H. Tanaka, Nat. Commun. 10, 1064 (2019)

    ADS  Google Scholar 

  5. A.M. do Nascimento-Junior, R.R. Montenegro-Fihlo, Phys. Rev. B 99, 064404 (2019)

    ADS  Google Scholar 

  6. T. Ito, C. Iino, N. Shibata, Phys. Rev. B 97, 184409 (2018)

    ADS  Google Scholar 

  7. P.W. Anderson, Mater. Res. Bull. 8, 153 (1973)

    Google Scholar 

  8. P. Fazekas, P.W. Anderson, Philos. Mag. 30, 423 (1974)

    ADS  Google Scholar 

  9. S. Liang, B. Doucot, P.W. Anderson, Phys. Rev. Lett. 61, 365 (1988)

    ADS  Google Scholar 

  10. S. Sachdev, Phys. Rev. B 45, 12377 (1992)

    ADS  Google Scholar 

  11. A.W. Sandvik, Phys. Rev. Lett. 95, 207203 (2005)

    ADS  Google Scholar 

  12. S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950)

    ADS  Google Scholar 

  13. J.M. Luttinger, J. Math. Phys. 4, 1154 (1963)

    ADS  MathSciNet  Google Scholar 

  14. F.D. Haldane, J. Phys. C 14, 2585 (1981)

    ADS  Google Scholar 

  15. E. Lefancoise et al., Phys. Rev. B 94, 214416 (2016)

    ADS  Google Scholar 

  16. N. Martin, L.-P. Regnault, S. Klimko, J. Phys.: Conf. Ser. 340, 012012 (2012)

    Google Scholar 

  17. X. Zotos, Phys. Rev. Lett. 82, 1764 (1999)

    ADS  Google Scholar 

  18. J. Benz, T. Fukui, A. Klümper, C. Scheeren, J. Phys. Soc. Jpn. 74, 181 (2005)

    ADS  Google Scholar 

  19. X. Zotos, P. Prelovsek,Transport in one dimensional quantum systems (Kluwer Academic Publishers, Dordrecht, 2004)

  20. A.V. Sologubenko, T. Lorenz, H.R. Ott, A. Freimuth, J. Low Temp. Phys. 147, 387 (2007)

    ADS  Google Scholar 

  21. A.V. Sologubenko, K. Gianno, H.R. Ott, A. Vietkine, A. Revcolevschi, Phys. Rev. B 64, 054412 (2001)

    ADS  Google Scholar 

  22. N. Hlubek, P. Riberio, R. Saint-Martin, A. Revcolevschi, G. Roth, G. Behr, B. Buchner, C. Hess, Phys. Rev. B 81, 020405(R) (2010)

    ADS  Google Scholar 

  23. C. Hess, H. ElHaes, A. Waske, B. Buchner, C. Sekar, G. Krabbes, F. Heidrich-Meisner, W. Brenig, Phys. Rev. Lett. 98, 027201 (2007)

    ADS  Google Scholar 

  24. A.V. Sologubenko, K. Berggold, T. Lorenz, A. Rosch, E. Shimshoni, M.D. Philips, M.M. Turnbull, Phys. Rev. Lett. 98, 107201 (2004)

    ADS  Google Scholar 

  25. A.V. Sologubenko, T. Lorenz, J.A. Mydosh, A. Rosch, A.C. Shortsleeves, M.M. Turnbull, Phys. Rev. Lett. 100, 137202 (2008)

    ADS  Google Scholar 

  26. E. Shimshoni, D. Rasch, P. Jung, A.V. Sologubenko, A. Rosch, Phys. Rev. B 79, 064406 (2009)

    ADS  Google Scholar 

  27. H. Rezania, Prog. Theor. Exp. Phys. 2014, 033I01 (2014)

    Google Scholar 

  28. H. Rezania, A. Langari, P.H.M. Loosdrekht, X. Zotos, Eur. Phys. J. B 47, 173 (2014)

    ADS  Google Scholar 

  29. T. Moriya, Phys. Rev. 120, 91 (1960)

    ADS  Google Scholar 

  30. F. Pulizzi, Nat. Mater. 11, 367 (2012)

    ADS  Google Scholar 

  31. S.A. Wolf et al., Science 294, 1488 (2001)

    ADS  Google Scholar 

  32. J.C. Slonczewski, Phys. Rev. B 39, 6995 (1989)

    ADS  Google Scholar 

  33. S. Murakami, N. Nagaosa, S.C. Zhang, Science 301, 1348 (2003)

    ADS  Google Scholar 

  34. J. Sinova et al., Phys. Rev. Lett. 92, 126603 (2004)

    ADS  Google Scholar 

  35. Y.K. Kato et al., Science 306, 1910 (2004)

    ADS  Google Scholar 

  36. K. Louis, C. Gros, Phys. Rev. B 67, 224410 (2003)

    ADS  Google Scholar 

  37. C. Psaroudaki et al., Phys. Rev. B 89, 224418 (2014)

    ADS  Google Scholar 

  38. S. Langer et al., Phys. Rev. B 82, 104424 (2010)

    ADS  Google Scholar 

  39. J. Stolpp et al., Phys. Rev. B 99, 134413 (2019)

    ADS  Google Scholar 

  40. G.D. Mahan,Many-particle physics (Kluwer Academic/ Plenum Publishers, 2000)

  41. A. Abrikosov, L. Gorkov, T. Dzyloshinskii,Methods of Quantum Field Theory in Statistical Physics (Dover, New York, 1975)

  42. M. Sentef, M. Kollar, A.P. Kampf, Phys. Rev. B 75, 214403 (2007)

    ADS  Google Scholar 

  43. H. Rezania, A. Langari, P. Thalmeier, Phys. Rev. B 79, 094401 (2009)

    ADS  Google Scholar 

  44. A.L. Fetter, J.D. Walecka,Quantum Theory of Many Particle Systems (McGraw-Hill, New York, 1971)

  45. D.J. Scalapino, S.R. White, S. Zhang, Phys. Rev. B 47, 7995 (1993)

    ADS  Google Scholar 

  46. P. Chandra, P. Coleman, A.I. Larkin, J. Phys.: Condens. Matter 2, 7933 (1990)

    ADS  Google Scholar 

  47. B.S. Shastry, B. Sutherland, Phys. Rev. Lett. 65, 243 (1990)

    ADS  MathSciNet  Google Scholar 

  48. J.V. Alvarez, C. Gros, Phys. Rev. Lett. 88, 077203 (2002)

    ADS  Google Scholar 

  49. J.V. Alvarez, C. Gros, Phys. Rev. B 66, 094403 (2002)

    ADS  Google Scholar 

  50. F. Azizi, H. Rezania, Physica E 109, 17 (2019)

    ADS  Google Scholar 

  51. K. Damle, S. Sachdev, Phys. Rev. B 56, 8714 (1997)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Rezania.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, F., Rezania, H. Spin transport properties of anisotropic Heisenberg antiferromagnet on honeycomb lattice in the presence of magnetic field. Eur. Phys. J. B 93, 29 (2020). https://doi.org/10.1140/epjb/e2020-100444-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100444-8

Keywords

Navigation