Skip to main content
Log in

Stochastic Higgins model with diffusion: pattern formation, multistability and noise-induced preference

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A distributed variant of the Higgins glycolytic model with the diffusion is considered. A parametric description of the zone with Turing instability is found. By computer simulations, a process of the spatial pattern formation is studied. The multistability of the distributed Higgins model was discovered and the variety of patterns and their amplitude characteristics were described. In the quantitative analysis of the transient processes with varying spatial modality, the method of harmonic coefficients is used. For the stochastic variant of this model with multiplicative random disturbances, noise-induced transitions between coexisting patterns and the phenomenon of “stochastic preference” are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Turing. Philos. Trans. R. Soc. London Ser. B, Biol. Sci. 237, 37 (1952)

    Article  ADS  Google Scholar 

  2. G. Nicolis, I. Prigogine,Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977)

  3. R. Hoyle,Pattern Formation: An Introduction to Methods (Cambridge University Press, Cambridge, 2006)

  4. M. Cross, H. Greenside,Pattern Formation and Dynamics in Nonequilibrium Systems (Cambridge University Press, Cambridge, 2009)

  5. Y. Kuramoto,Chemical Oscillations, Waves, and Turbulence, (Springer, Science & Business Media, Berlin, 2012)

  6. T. Kohsokabe, K. Kaneko, Europhys. Lett. 116, 48005 (2016)

    Article  ADS  Google Scholar 

  7. M. Meixner, A. De Wit, S. Bose, E. Scholl, Phys. Rev. E 55, 6690 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  8. I. Prigogine, R. Lefever, J. Chem. Phys. 48, 1695 (1968)

    Article  ADS  Google Scholar 

  9. R. Peng, M. Wang, J. Math. Anal. Appl. 309, 151 (1964)

    Article  Google Scholar 

  10. G. Gambino, M.C. Lombardo, M. Sammartino, V. Sciacca, Phys. Rev. E 88, 042925 (2013)

    Article  ADS  Google Scholar 

  11. E. Ekaterinchuk, L. Ryashko, AIP Conf. Proc. 1773, 060005 (2016)

    Article  Google Scholar 

  12. M. Baurmann, T. Gross, U. Feudel, J. Theor. Biol. 245, 220 (2007)

    Article  Google Scholar 

  13. J. Smith-Roberge, D. Iron, T. Kolokolnikov, Euro. J. Appl. Math. 30, 196 (2019)

    Article  Google Scholar 

  14. S. van der Stelt, A. Doelman, G. Hek, J.D.M. Rademacher, J. Nonlinear Sci. 23, 39 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  15. W. Horsthemke, R. Lefever,Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology (Springer, Berlin, 1984)

  16. A.S. Mikhailov, A.Yu. Loskutov,Foundations of Synergetics II: Chaos and Noise, (Springer, Berlin, 1996)

  17. D. Valenti, L. Tranchina, M. Brai, A. Caruso, C. Cosentino, B. Spagnolo, Ecol. Modell. 213, 449 (2008)

    Article  Google Scholar 

  18. O.A. Chichigina, A.A. Dubkov, D. Valenti, B. Spagnolo, Phys. Rev. E 84, 021134 (2011)

    Article  ADS  Google Scholar 

  19. I. Bashkirtseva, L. Ryashko, Physica A 491, 28 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  20. A. La Barbera, B. Spagnolo, Physica A 314, 120 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Fiasconaro, D. Valenti, B. Spagnolo, Acta Phys. Pol. B 35, 1491 (2004)

    ADS  Google Scholar 

  22. D. Valenti, A. Fiasconaro, B. Spagnolo, Acta Phys. Pol. B 35, 1481 (2004)

    ADS  Google Scholar 

  23. P. D’Odorico, F. Laio, L. Ridolfi, Geophys. Res. Lett. 33, L19404 (2006)

    Article  ADS  Google Scholar 

  24. V.O. Kharchenko, D.O. Kharchenko, Eur. Phys. J. B 85, 383 (2012)

    Article  ADS  Google Scholar 

  25. M.A. Morales, I. Fernandez-Cervantes, R. Agustin-Serrano, A. Anzo, M.P. Sampedro, Eur. Phys. J. B 89, 182 (2016)

    Article  ADS  Google Scholar 

  26. A.I. Lavrova, S. Bagyan, T. Mair, M.J.B. Hauser, L. Schimansky-Geier, BioSystems 97, 127 (2009)

    Article  Google Scholar 

  27. J. Zhou, J. Shi, IMA J. Appl. Math. 80, 1703 (2015)

    Article  MathSciNet  Google Scholar 

  28. A. Atabaigi, A. Barati, H. Norouzi, Comput. Math. Appl. 75, 4361 (2018)

    Article  MathSciNet  Google Scholar 

  29. J. Higgins, Proc. Natl. Acad. Sci. U.S.A. 51, 989 (1964)

    Article  ADS  Google Scholar 

  30. K.W. Morton,Numerical Solution of Partial Differential Equations: An Introduction (Cambridge University Press, Cambridge, 2005)

  31. W.E. Schiesse,The Numerical Method of Lines (Academic Press, Cambridge, 1991)

  32. A.N. Pisarchik, U. Feudel, Phys. Rep. 540, 167 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  33. L. Ryashko, Chaos 28, 033602 (2018)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Bashkirtseva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashkirtseva, I., Pankratov, A. Stochastic Higgins model with diffusion: pattern formation, multistability and noise-induced preference. Eur. Phys. J. B 92, 238 (2019). https://doi.org/10.1140/epjb/e2019-100291-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100291-4

Keywords

Navigation