Skip to main content

Advertisement

Log in

Studying the occupied and unoccupied electronic structure of LaCoO3 by using DFT+embedded DMFT method with the calculated value of U

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this work, we present a systematic study of the occupied and unoccupied electronic states of LaCoO3 compound using DFT, DFT+U and DFT+embedded DMFT methods. The value of U used here is evaluated by using constrained DFT method and found to be ~6.9 eV. It is found that DFT result has limitations with energy positions of PDOS peaks due to its inability of creating a hard gap although the DOS distribution appears to be fine with experimental attributes. The calculated value of U is not an appropriate value for carrying out DFT+U calculations as it has created an insulating gap of ~1.8 eV with limitations in redistribution of DOS which is inconsistent with experimental spectral behavior for the occupied states mainly. However, this value of U is found to be an appropriate one for DFT+embedded DMFT method which creates a gap of ~1.1 eV. The calculated PDOS of Co 3d, La 5d, La 4f and O 2p states are giving a remarkably good explanation for the occupied and unoccupied states of the experimental spectra in the energy range ~–9.0 eV to ~12.0 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N.D. Mathur, P.B. Littlewood, Phys. Today 56, 25 (2003)

    Article  ADS  Google Scholar 

  2. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

  3. V.I. Anisimov, O. Gunnarsson, Phys. Rev. B 43, 7570 (1991)

    Article  ADS  Google Scholar 

  4. C. Herring, in Magnetism, edited by G.T. Rado, H. Suhl (Academic, New York, 1966), Vol. IV

  5. M. Cococcioni, S. de Gironcoli, Phys. Rev. B 71, 035105 (2005)

    Article  ADS  Google Scholar 

  6. F. Aryasetiawan, K. Karlsson, O. Jepsen, U. Schönberger, Phys. Rev. B 74, 125106 (2006)

    Article  ADS  Google Scholar 

  7. F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann, A.I. Lichtenstein, Phys. Rev. B 70, 195104 (2004)

    Article  ADS  Google Scholar 

  8. V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44, 943 (1991)

    Article  ADS  Google Scholar 

  9. O. Bengone, M. Alouani, P. Blöchl, J. Hugel, Phys. Rev. B 62, 392 (2000)

    Article  Google Scholar 

  10. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998)

    Article  ADS  Google Scholar 

  11. K. Terakura, T. Oguchi, A.R. Williams, J. Kuebler, Phys. Rev. B 30, 4734 (1984)

    Article  ADS  Google Scholar 

  12. G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 53, 2239 (1984)

    Article  ADS  Google Scholar 

  13. H. Hsu, P. Blaha, R.M. Wentzcovitch, C. Leighton, Phys. Rev. B 82 , 100406 (2010)

    Article  ADS  Google Scholar 

  14. J.-X. Zhu, R.C. Albers, K. Haule, G. Kotliar, J.M. Wills, Nat. Commun. 4, 2644 (2013) and references therein

    Article  Google Scholar 

  15. V.I. Anisimov, A.I. Poteryaev, M.A. Korotin, A.O. Anokhin, G. Kotliar, J. Phys.: Condens. Matter 9, 7359 (1997)

    ADS  Google Scholar 

  16. A.I. Lichtenstein, M.I. Katsnelson, Phys. Rev. B 57, 6884 (1998)

    Article  ADS  Google Scholar 

  17. H.T. Dang, X. Ai, A.J. Millis, C.A. Marianetti, Phys. Rev. B 90, 125114 (2014)

    Article  ADS  Google Scholar 

  18. K. Haule, T. Birol, Phys. Rev. Lett. 115, 256402 (2015)

    Article  ADS  Google Scholar 

  19. K. Haule, C.-H. Yee, K. Kim, Phys. Rev. B 81, 195107 (2010)

    Article  ADS  Google Scholar 

  20. N. Marzari, D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)

    Article  ADS  Google Scholar 

  21. G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, C.A. Marianetti, Rev. Mod. Phys. 78, 865 (2006)

    Article  ADS  Google Scholar 

  22. J.B. Goodenough, J. Phys. Chem. Solids 6, 287 (1958)

    Article  ADS  Google Scholar 

  23. R.R. Heikes, R.C. Miller, R. Mazelsky, Physica (Amsterdam) 30, 1600 (1964)

    Article  ADS  Google Scholar 

  24. P.M. Raccah, J.B. Goodenough, Phys. Rev. 155, 932 (1967)

    Article  ADS  Google Scholar 

  25. V.G. Bhide, D.S. Rajoria, Y.S. Reddy, Phys. Rev. Lett. 28, 1133 (1972)

    Article  ADS  Google Scholar 

  26. B.W. Veal, D.J. Lam, J. Appl. Phys. 49, 1461 (1978)

    Article  ADS  Google Scholar 

  27. M. Abbate, J.C. Fuggle, A. Fujimori, L.H. Tjeng, C.T. Chen, R. Potze, G.A. Sawatzky, H. Eisaki, S. Uchida, Phys. Rev. B 47, 16124 (1993)

    Article  ADS  Google Scholar 

  28. S.R. Barman, D.D. Sarma, Phys. Rev. B 49, 13979 (1994)

    Article  ADS  Google Scholar 

  29. D.J. Lam, B.W. Veal, D.E. Ellis, Phys. Rev. B 22, 5730 (1980)

    Article  ADS  Google Scholar 

  30. M.A. Korotin, S.Y. Ezhov, I.V. Solovyev, V.I. Anisimov, D.I.Khomskii, G.A. Sawatzky, Phys. Rev. B 54, 5309 (1996)

    Article  ADS  Google Scholar 

  31. V.P. Plakhty, P.J. Brown, B. Grenier, S.V. Shiryaev, S.N. Barilo, S.V. Gavrilov, E. Ressouche, J. Phys.: Condens. Matter 18, 3517 (2006)

    ADS  Google Scholar 

  32. S. Yamaguchi, Y. Okimoto, H. Taniguchi, Y. Tokura, Phys. Rev. B 53, R2926 (1996)

    Article  ADS  Google Scholar 

  33. Y. Kobayashi, N. Fujiwara, S. Murata, K. Asai, H. Yasuoka, Phys. Rev. B 62, 410 (2000)

    Article  ADS  Google Scholar 

  34. C. Zobel, M. Kriener, D. Bruns, J. Baier, M. Grüninger, T. Lorenz, P. Reutler, A. Revcolevschi, Phys. Rev. B 66, 020402(R) (2002)

    Article  ADS  Google Scholar 

  35. P.G. Radaelli, S.W. Cheong, Phys. Rev. B 66, 094408 (2002)

    Article  ADS  Google Scholar 

  36. G. Maris, Y. Ren, V. Volotchaev, C. Zobel, T. Lorenz, T.T.M. Palstra, Phys. Rev. B 67, 224423 (2003)

    Article  ADS  Google Scholar 

  37. I.A. Nekrasov, S.V. Streltsov, M.A. Korotin, V.I. Anisimov, Phys. Rev. B 68, 235113 (2003)

    Article  ADS  Google Scholar 

  38. A. Ishikawa, J. Nohara, S. Sugai, Phys. Rev. Lett. 93, 136401 (2004)

    Article  ADS  Google Scholar 

  39. D. Phelan, D. Louca, S. Rosenkranz, S.-H. Lee, Y. Qiu, P.J. Chupas, R. Osborn, H. Zheng, J.F. Mitchell, J.R.D. Copley, J.L. Sarrao, Y. Moritomo, Phys. Rev. Lett. 96, 027201 (2006)

    Article  ADS  Google Scholar 

  40. T. Saitoh, T. Mizokawa, A. Fujimori, M. Abbate, Y. Takeda, M. Takano, Phys. Rev. B 55, 4257 (1997)

    Article  ADS  Google Scholar 

  41. K. Knízek, Z. Jirák, J. Hejtmánek, P. Novák, J. Phys.: Condens. Matter 18, 3285 (2006)

    ADS  Google Scholar 

  42. K. Tomiyasu, J. Okamoto, H.Y. Huang, Z.Y. Chen, E.P. Sinaga, W.B. Wu, Y.Y. Chu, A. Singh, R.-P. Wang, F.M.F. de Groot, A. Chainani, S. Ishihara, C.T. Chen, D.J. Huang, Phys. Rev. Lett. 119, 196402 (2017)

    Article  ADS  Google Scholar 

  43. B. Chakrabarti, T. Birol, K. Haule, Phys. Rev. Materials 1, 064403 (2017)

    Article  ADS  Google Scholar 

  44. L. Craco, E. Müller-Hartmann, Phys. Rev. B 77, 045130 (2008)

    Article  ADS  Google Scholar 

  45. J. Kuneš, V. Křápek, PRL 106, 256401 (2011)

    Article  ADS  Google Scholar 

  46. J. Kuneš , I. Leonov, P. Augustinský, V. Křápek, M. Kollar, D. Vollhardt, Eur. Phys. J. Special Topics 226, 2641 (2017)

    Article  ADS  Google Scholar 

  47. G. Zhang, E. Gorelov, E. Koch, E. Pavarini, Phys. Rev. B 86, 184413 (2012)

    Article  ADS  Google Scholar 

  48. V. Křápek, P. Novák, J. Kuneš, D. Novoselov, Dm.M. Korotin, V.I. Anisimov, Phys. Rev. B 86, 195104 (2012)

    Article  ADS  Google Scholar 

  49. A. Sotnikov, J. Kuneš, Sci. Rep. 6, 30510 (2016)

    Article  ADS  Google Scholar 

  50. Dm. Korotin, A.V. Kozhevnikov, S.L. Skornyakov, I. Leonov, N. Binggeli, V.I. Anisimov, G. Trimarchi, Eur. Phys. J. B 65, 91 (2008)

    Article  ADS  Google Scholar 

  51. S.K. Pandey, A. Kumar, S. Patil, V.R.R. Medicherla, R.S. Singh, K. Maiti, D. Prabhakaran, A.T. Boothroyd, A.V. Pimpale, Phys. Rev. B 77, 045123 (2008)

    Article  ADS  Google Scholar 

  52. S.K. Pandey, A. Kumar, S. Banik, A.K. Shukla, S.R. Barman, A.V. Pimpale, Phys. Rev. B. 77, 113104 (2008)

    Article  ADS  Google Scholar 

  53. S. Tsubouchi, T. Kyômen, M. Itoh, M. Oguni, Phys. Rev. B 69, 144406 (2004)

    Article  ADS  Google Scholar 

  54. S. Lal, S.K. Pandey, EPL 117, 37002 (2017)

    Article  ADS  Google Scholar 

  55. S. Lal, S.K. Pandey, Phys. Lett. A 381, 2117 (2017)

    Article  ADS  Google Scholar 

  56. K. Takubo, J.-Y. Son, T. Mizokawa, H. Ueda, M. Isobe, Y. Matsushita, Y. Ueda, Phys. Rev. B 74, 155103 (2006)

    Article  ADS  Google Scholar 

  57. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, (Vienna University of Technology Vienna, 2001)

  58. R.O. Jones, O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989)

    Article  ADS  Google Scholar 

  59. G.K.H. Madsen, P. Novák, Europhys. Lett. 69, 777 (2005)

    Article  ADS  Google Scholar 

  60. F. Bultmark, F. Cricchio, O. Granas, L. Nordstrom, Phys. Rev. B 80, 035121 (2009)

    Article  ADS  Google Scholar 

  61. K. Haule, Phys. Rev. B 75, 155113 (2007)

    Article  ADS  Google Scholar 

  62. K. Haule, Phys. Rev. Lett. 115, 196403 (2015)

    Article  ADS  Google Scholar 

  63. M. Jarrell, J.E. Gubernatis, Phys. Rep. 269, 133 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  64. D.D. Sarma, N. Shanthi, S.R. Barman, N. Hamada, H. Sawada, K. Terakura, Phys. Rev. Lett. 75, 1126 (1995)

    Article  ADS  Google Scholar 

  65. K. Maiti, Phys. Rev. B 73, 115119 (2006)

    Article  ADS  Google Scholar 

  66. K. Maiti, R.S. Singh, Phys. Rev. B 71, 161102(R) (2005)

    Article  ADS  Google Scholar 

  67. L. Duó, M. Finazzi, L. Braicovich, Phys. Rev. B 48, 10728 (1993)

    Article  ADS  Google Scholar 

  68. M. Abbate, J.C. Fuggle, A. Fujimori, L.H. Tjeng, C.T. Chen, R. Potze, G.A. Sawatzky, H. Eisaki, S. Uchida, Phys. Rev. B 47, 16124 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paromita Dutta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, P., Lal, S. & Pandey, S.K. Studying the occupied and unoccupied electronic structure of LaCoO3 by using DFT+embedded DMFT method with the calculated value of U. Eur. Phys. J. B 91, 183 (2018). https://doi.org/10.1140/epjb/e2018-90116-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90116-7

Keywords

Navigation