Skip to main content
Log in

Phonon-induced dissipation and decoherence in solid-state quantum devices: Markovian versus non-Markovian treatments

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Microscopic modeling of electronic phase coherence versus energy dissipation plays a crucial role in the design and optimization of new-generation electronic quantum nanodevices, like quantum-cascade light sources and quantum logic gates; in this context, non-Markovian density-matrix approaches are widely used simulation strategies. Here we show that such methods, along with valuable virtues, in some circumstances may exhibit potential limitations that need to be taken into account for a reliable description of quantum materials and related devices. More specifically, extending the analysis recently proposed in [EPL 112, 67005 (2015)] to high temperatures and degenerate conditions, we show that the usual mean-field treatment – employed to derive quantum-kinetic equations – in some cases may lead to anomalous results, characterized by decoherence suppression and positivity violations. By means of a simple two-level model, we show that such unexpected behaviors may affect zero-dimensional electronic systems coupled to dispersionless phonon modes, while such anomalies are expected to play a negligible role in nanosystems with higher dimensionality; these limitations are found to be significant in the low-density and low-temperature limit, while in the degenerate and/or finite-temperature regime – typical of many state-of-the-art quantum devices – their impact is strongly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Esaki, R. Tsu, IBM J. Res. Dev. 14, 61 (1970)

    Article  Google Scholar 

  2. A. Cho, Molecular beam epitaxy, key papers in applied physics (Springer-Verlag, New York, 1994)

  3. D. Bimberg, M. Grundmann, N. Ledentsov, Quantum dot heterostructures (Wiley, New York, 1999)

  4. T. Ihn, Semiconductor nanostructures: quantum states and electronic transport (OUP, Oxford, 2010)

  5. F. Capasso, Physics of quantum electron devices, Springer series in electronics and photonics (Springer London Limited, London, 2011)

  6. G. Bastard, Wave mechanics applied to semiconductor heterostructures, Monographies de physique (Les Éditions de Physique, Les Ulis, 1988)

  7. C. Jacoboni, P. Lugli, The Monte Carlo method for semiconductor device simulation (Springer, Wien, 1989)

  8. C.S. Lent, P.D. Tougaw, W. Porod, G.H. Bernstein, Nanotechnology 4, 49 (1993)

    Article  ADS  Google Scholar 

  9. A. Di Carlo, P. Vogl, W. Pötz, Phys. Rev. B 50, 8358 (1994)

    Article  ADS  Google Scholar 

  10. W. Quade, E. Schöll, F. Rossi, C. Jacoboni, Phys. Rev. B 50, 7398 (1994)

    Article  ADS  Google Scholar 

  11. S. Savasta, R. Girlanda, Phys. Rev. Lett. 77, 4736 (1996)

    Article  ADS  Google Scholar 

  12. V.M. Axt, S. Mukamel, Rev. Mod. Phys. 70, 145 (1998)

    Article  ADS  Google Scholar 

  13. F. Rossi, A. Di Carlo, P. Lugli, Phys. Rev. Lett. 80, 3348 (1998)

    Article  ADS  Google Scholar 

  14. M.V. Fischetti, Phys. Rev. B 59, 4901 (1999)

    Article  ADS  Google Scholar 

  15. S. Datta, Superlattice. Microst. 28, 253 (2000)

    Article  ADS  Google Scholar 

  16. F. Rossi, T. Kuhn, Rev. Mod. Phys. 74, 895 (2002)

    Article  ADS  Google Scholar 

  17. R.C. Iotti, F. Rossi, Rep. Prog. Phys. 68, 2533 (2005)

    Article  ADS  Google Scholar 

  18. H. Haug, A. Jauho, Quantum kinetics in transport and optics of semiconductors (Springer, Berlin, 2007)

  19. S. Datta, Quantum transport: atom to transistor (Cambridge University Press, New York, 2005)

  20. H. Haug, S. Koch, Quantum theory of the optical and electronic properties of semiconductors (World Scientific, Singapore, 2004)

  21. F. Rossi, Theory of semiconductor quantum devices: microscopic modeling and simulation strategies (Springer, Heidelberg, 2011)

  22. F. Buot, Nonequilibrium quantum transport physics in nanosystems: foundation of computational nonequilibrium physics in nanoscience and nanotechnology (World Scientific, Singapore, 2009)

  23. R.C. Iotti, E. Ciancio, F. Rossi, Phys. Rev. B 72, 125347 (2005)

    Article  ADS  Google Scholar 

  24. R. Rosati, F. Dolcini, R.C. Iotti, F. Rossi, Phys. Rev. B 88, 035401 (2013)

    Article  ADS  Google Scholar 

  25. R.C. Iotti, F. Dolcini, F. Rossi, Phys. Rev. B 96, 115420 (2017)

    Article  ADS  Google Scholar 

  26. H. Spohn, Rev. Mod. Phys. 52, 569 (1980)

    Article  ADS  Google Scholar 

  27. E. Davies, Quantum theory of open systems (Academic Press, London, 1976)

  28. D. Taj, R.C. Iotti, F. Rossi, Eur. Phys. J. B 72, 305 (2009)

    Article  ADS  Google Scholar 

  29. F. Dolcini, R.C. Iotti, F. Rossi, Phys. Rev. B 88, 115421 (2013)

    Article  ADS  Google Scholar 

  30. R. Rosati, R.C. Iotti, F. Dolcini, F. Rossi, Phys. Rev. B 90, 125140 (2014)

    Article  ADS  Google Scholar 

  31. R. Rosati, F. Rossi, Phys. Rev. B 89, 205415 (2014)

    Article  ADS  Google Scholar 

  32. R. Rosati, F. Dolcini, F. Rossi, Phys. Rev. B 92, 235423 (2015)

    Article  ADS  Google Scholar 

  33. R. Rosati, D.E. Reiter, T. Kuhn, Phys. Rev. B 95, 165302 (2017)

    Article  ADS  Google Scholar 

  34. M. Bonitz, Quantum kinetic theory, Teubner-Texte zur Physik (Teubner, Leipzig, 1998)

  35. D.B. Tran Thoai, H. Haug, Phys. Rev. B 47, 3574 (1993)

    Article  ADS  Google Scholar 

  36. J. Schilp, T. Kuhn, G. Mahler, Phys. Rev. B 50, 5435 (1994)

    Article  ADS  Google Scholar 

  37. C. Fürst, A. Leitenstorfer, A. Laubereau, R. Zimmermann, Phys. Rev. Lett. 78, 3733 (1997)

    Article  ADS  Google Scholar 

  38. L. Bányai, Q.T. Vu, B. Mieck, H. Haug, Phys. Rev. Lett. 81, 882 (1998)

    Article  ADS  Google Scholar 

  39. P. Gartner, L. Bányai, H. Haug, Phys. Rev. B 60, 14234 (1999)

    Article  ADS  Google Scholar 

  40. Q.T. Vu, H. Haug, W.A. Hügel, S. Chatterjee, M. Wegener, Phys. Rev. Lett. 85, 3508 (2000)

    Article  ADS  Google Scholar 

  41. K. Hannewald, S. Glutsch, F. Bechstedt, Phys. Rev. Lett. 86, 2451 (2001)

    Article  ADS  Google Scholar 

  42. O.M. Schmitt, D.B.T. Thoai, L. Bányai, P. Gartner, H. Haug, Phys. Rev. Lett. 86, 3839 (2001)

    Article  ADS  Google Scholar 

  43. V.M. Axt, B. Haase, U. Neukirch, Phys. Rev. Lett. 86, 4620 (2001)

    Article  ADS  Google Scholar 

  44. M. Betz, G. Göger, A. Laubereau, P. Gartner, L. Bányai, H. Haug, K. Ortner, C.R. Becker, A. Leitenstorfer, Phys. Rev. Lett. 86, 4684 (2001)

    Article  ADS  Google Scholar 

  45. B. Mieck, H. Haug, Phys. Rev. B 66, 075111 (2002)

    Article  ADS  Google Scholar 

  46. T. Wolterink, V.M. Axt, T. Kuhn, Phys. Rev. B 67, 115311 (2003)

    Article  ADS  Google Scholar 

  47. M. Herbst, M. Glanemann, V.M. Axt, T. Kuhn, Phys. Rev. B 67, 195305 (2003)

    Article  ADS  Google Scholar 

  48. J. Förstner, C. Weber, J. Danckwerts, A. Knorr, Phys. Rev. Lett. 91, 127401 (2003)

    Article  ADS  Google Scholar 

  49. J. Seebeck, T.R. Nielsen, P. Gartner, F. Jahnke, Phys. Rev. B 71, 125327 (2005)

    Article  ADS  Google Scholar 

  50. S. Butscher, J. Förstner, I. Waldmüller, A. Knorr, Phys. Rev. B 72, 045314 (2005)

    Article  ADS  Google Scholar 

  51. M. Glanemann, V.M. Axt, T. Kuhn, Phys. Rev. B 72, 045354 (2005)

    Article  ADS  Google Scholar 

  52. K.M. Indlekofer, J. Knoch, J. Appenzeller, Phys. Rev. B 72, 125308 (2005)

    Article  ADS  Google Scholar 

  53. A. Krügel, V.M. Axt, T. Kuhn, Phys. Rev. B 73, 035302 (2006)

    Article  ADS  Google Scholar 

  54. P. Gartner, J. Seebeck, F. Jahnke, Phys. Rev. B 73, 115307 (2006)

    Article  ADS  Google Scholar 

  55. Q.T. Vu, H. Haug, S.W. Koch, Phys. Rev. B 73, 205317 (2006)

    Article  ADS  Google Scholar 

  56. M. Nedjalkov, D. Vasileska, D.K. Ferry, C. Jacoboni, C. Ringhofer, I. Dimov, V. Palankovski, Phys. Rev. B 74, 035311 (2006)

    Article  ADS  Google Scholar 

  57. J. Zhou, J.L. Cheng, M.W. Wu, Phys. Rev. B 75, 045305 (2007)

    Article  ADS  Google Scholar 

  58. I.A. Shelykh, R. Johne, D.D. Solnyshkov, A.V. Kavokin, N.A. Gippius, G. Malpuech, Phys. Rev. B 76, 155308 (2007)

    Article  ADS  Google Scholar 

  59. P. Zhang, M.W. Wu, Phys. Rev. B 76, 193312 (2007)

    Article  ADS  Google Scholar 

  60. E. Rozbicki, P. Machnikowski, Phys. Rev. Lett. 100, 027401 (2008)

    Article  ADS  Google Scholar 

  61. A. Grodecka-Grad, J. Förstner, Phys. Rev. B 81, 115305 (2010)

    Article  ADS  Google Scholar 

  62. U. Aeberhard, Phys. Rev. B 84, 035454 (2011)

    Article  ADS  Google Scholar 

  63. J.M. Daniels, T. Papenkort, D.E. Reiter, T. Kuhn, V.M. Axt, Phys. Rev. B 84, 165310 (2011)

    Article  ADS  Google Scholar 

  64. C. Thurn, V.M. Axt, Phys. Rev. B 85, 165203 (2012)

    Article  ADS  Google Scholar 

  65. T. Papenkort, V.M. Axt, T. Kuhn, Phys. Rev. B 85, 235317 (2012)

    Article  ADS  Google Scholar 

  66. H. Haug, T.D. Doan, D.B. Tran Thoai, Phys. Rev. B 89, 155302 (2014)

    Article  ADS  Google Scholar 

  67. M. Cygorek, V.M. Axt, Phys. Rev. B 90, 035206 (2014)

    Article  ADS  Google Scholar 

  68. T. Papenkort, V.M. Axt, T. Kuhn, Phys. Rev. Lett. 118, 097401 (2017)

    Article  ADS  Google Scholar 

  69. F. Ungar, M. Cygorek, V.M. Axt, Phys. Rev. B 95, 245203 (2017)

    Article  ADS  Google Scholar 

  70. R.C. Iotti, F. Rossi, EPL 112, 67005 (2015)

    Article  ADS  Google Scholar 

  71. G.C. Cho, W. Kütt, H. Kurz, Phys. Rev. Lett. 65, 764 (1990)

    Article  ADS  Google Scholar 

  72. R.C. Iotti, F. Rossi, M.S. Vitiello, G. Scamarcio, L. Mahler, A. Tredicucci, Appl. Phys. Lett. 97, 033110 (2010)

    Article  ADS  Google Scholar 

  73. M.S. Vitiello, R.C. Iotti, F. Rossi, L. Mahler, A. Tredicucci, H.E. Beere, D.A. Ritchie, Q. Hu, G. Scamarcio, Appl. Phys. Lett. 100, 091101 (2012)

    Article  ADS  Google Scholar 

  74. R.C. Iotti, F. Rossi, New J. Phys. 15, 075027 (2013)

    Article  ADS  Google Scholar 

  75. V.M. Axt, M. Herbst, T. Kuhn, Superlattices Microstruct. 26, 117 (1999)

    Article  ADS  Google Scholar 

  76. O. Verzelen, R. Ferreira, G. Bastard, Phys. Rev. Lett. 88, 146803 (2002)

    Article  ADS  Google Scholar 

  77. T. Grange, R. Ferreira, G. Bastard, Phys. Rev. B 76, 241304 (2007)

    Article  ADS  Google Scholar 

  78. L. Bányai, D.B.T. Thoai, E. Reitsamer, H. Haug, D. Steinbach, M.U. Wehner, M. Wegener, T. Marschner, W. Stolz, Phys. Rev. Lett. 75, 2188 (1995)

    Article  ADS  Google Scholar 

  79. M.U. Wehner, M.H. Ulm, D.S. Chemla, M. Wegener, Phys. Rev. Lett. 80, 1992 (1998)

    Article  ADS  Google Scholar 

  80. A. Leitenstorfer, A. Lohner, K. Rick, P. Leisching, T. Elsaesser, T. Kuhn, F. Rossi, W. Stolz, K. Ploog, Phys. Rev. B 49, 16372 (1994)

    Article  ADS  Google Scholar 

  81. S. Haas, F. Rossi, T. Kuhn, Phys. Rev. B 53, 12855 (1996)

    Article  ADS  Google Scholar 

  82. H. Breuer, F. Petruccione, The theory of open quantum systems (OUP, Oxford, 2007)

  83. R. Zimmermann, J. Wauer, J. Lumin. 58, 271 (1994)

    Article  Google Scholar 

  84. R.C. Iotti, F. Rossi, Appl. Phys. Lett. 76, 2265 (2000)

    Article  ADS  Google Scholar 

  85. S. De Rinaldis, I. D’Amico, F. Rossi, Phys. Rev. B 69, 235316 (2004)

    Article  ADS  Google Scholar 

  86. B. Krummheuer, V.M. Axt, T. Kuhn, I. D’Amico, F. Rossi, Phys. Rev. B 71, 235329 (2005)

    Article  ADS  Google Scholar 

  87. G. Callsen, G.M.O. Pahn, S. Kalinowski, C. Kindel, J. Settke, J. Brunnmeier, C. Nenstiel, T. Kure, F. Nippert, A. Schliwa et al., Phys. Rev. B 92, 235439 (2015)

    Article  ADS  Google Scholar 

  88. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, S.C. Zhang, Science 318, 766 (2007)

    Article  ADS  Google Scholar 

  89. T. Posske, C.X. Liu, J.C. Budich, B. Trauzettel, Phys. Rev. Lett. 110, 016602 (2013)

    Article  ADS  Google Scholar 

  90. F. Dolcini, Phys. Rev. B 85, 033306 (2012)

    Article  ADS  Google Scholar 

  91. A. Naik, O. Buu, M.D. LaHaye, A.D. Armour, A.A. Clerk, M.P. Blencowe, K.C. Schwab, Nature 443, 193 (2006)

    Article  ADS  Google Scholar 

  92. A. Levy Yeyati, J.C. Cuevas, A. Martín-Rodero, Phys. Rev. Lett. 95, 056804 (2005)

    Article  ADS  Google Scholar 

  93. F. Dolcini, L. Dell’Anna, Phys. Rev. B 78, 024518 (2008)

    Article  ADS  Google Scholar 

  94. M. Glässl, A. Vagov, S. Lüker, D.E. Reiter, M.D. Croitoru, P. Machnikowski, V.M. Axt, T. Kuhn, Phys. Rev. B 84, 195311 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Claudia Iotti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iotti, R.C., Rossi, F. Phonon-induced dissipation and decoherence in solid-state quantum devices: Markovian versus non-Markovian treatments. Eur. Phys. J. B 90, 250 (2017). https://doi.org/10.1140/epjb/e2017-80462-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80462-3

Keywords

Navigation