Skip to main content
Log in

The random loading problem in fuse networks

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The strength of materials depends on their loading history. In brittle materials disorder and damage develop according to how various cracks evolve from the initial crack population. We study this issue in the context of the Random Fuse Model, and investigate how samples evolve and how the strength distribution and size-scaling are affected by the loading history. In the strongly brittle limit considered here, the crack populations present in the systems (two) are quite independent, but nevertheless there are important differences to the usually studied tensile uni-directional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Weibull, A Statistical Theory of the Strength of Materials (Generalstabens litografiska anstalts förlag, Stockholm, 1939)

  2. M.J. Alava, P.K.V.V. Nukala, S. Zapperi, Adv. Phys. 55, 349 (2006)

    Article  ADS  Google Scholar 

  3. M.J. Alava, P.K.V.V. Nukala, S. Zapperi, J. Phys. D 42, 214012 (2009)

    Article  ADS  Google Scholar 

  4. J. Fineberg, M. Marder, Phys. Rep. 313, 1 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  5. D. Bonamy, E. Bouchaud, Phys. Rep. 498, 1 (2011)

    Article  ADS  Google Scholar 

  6. D. Bonamy, J. Phys. D 42, 214014 (2009)

    Article  ADS  Google Scholar 

  7. M. Stojanova, S. Santucci, L. Vanel, O. Ramos, Phys. Rev. Lett. 112, 115502 (2014)

    Article  ADS  Google Scholar 

  8. F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, C. Marlière, Phys. Rev. Lett. 90, 075504 (2003)

    Article  ADS  Google Scholar 

  9. A.M. Freudenthal, in Fracture, edited by H. Liebowitz (Academic, New York, 1968), p. 591

  10. L. de Arcangelis, S. Redner, H.J. Herrmann, J. Phys. Lett. 46, 585 (1985)

    Article  Google Scholar 

  11. P.M. Duxbury, P.L. Leath, P.D. Beale, Phys. Rev. B 36, 367 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  12. P.D. Beale, P.M. Duxbury, Phys. Rev. B 37, 2785 (1988)

    Article  ADS  Google Scholar 

  13. E.J. Gumbel, Statistics of Extremes (Columbia University Press, New York, 1958)

  14. B.K. Chakrabarti, L.G. Benguigui, Statistical Physics of Fracture and Breakdown in Disordered Systems (Oxford University Press, New York, 1997)

  15. S. Zapperi, Eur. Phys. J. B 85, 329 (2012)

    Article  ADS  Google Scholar 

  16. F. Reurings, M. Alava, Eur. Phys. J. B 47, 85 (2005)

    Article  ADS  Google Scholar 

  17. C. Manzato, A. Shekhawat, P.K.V.V. Nukala, M.J. Alava, J.P. Sethna, S. Zapperi, Phys. Rev. Lett. 108, 065504 (2012)

    Article  ADS  Google Scholar 

  18. S. Lennartz-Sassinek, M. Zaiser, I.G. Main, C. Manzato, S. Zapperi, Phys. Rev. E 87, 042811 (2013)

    Article  ADS  Google Scholar 

  19. C. Manzato, M.J. Alava, S. Zapperi, Phys. Rev. E 90, 012408 (2014)

    Article  ADS  Google Scholar 

  20. Z. Bertalan, A. Shekhawat, J.P. Sethna, S. Zapperi, Phys. Rev. Appl. 2, 034008 (2014)

    Article  ADS  Google Scholar 

  21. L. de Haan, S.I. Resnick, Ann. Prob. 24, 97 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. S.I. Resnick, Extreme Values, Regular Variation, and Point Processes (Springer-Verlag, New York, 2007)

  23. G. Györgyi, N.R. Moloney, K. Ozogány, Z. Rácz, M. Droz, Phys. Rev. E 81, 041135 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  24. T.T. Shih, Eng. Fract. Mech. 13, 257 (1980)

    Article  Google Scholar 

  25. J. Lamon, A.G. Evans, J. Am. Cer. Soc. 66, 177 (1983)

    Article  Google Scholar 

  26. G. Alpa, Eng. Fract. Mech. 19, 881 (1984)

    Article  Google Scholar 

  27. R.C. Wetherhold, R.B. Pipes, Mat. Sci. Eng. 68, 113 (1984)

    Article  Google Scholar 

  28. R. Aronea, Eng. Fract. Mech. 32, 249 (1989)

    Article  Google Scholar 

  29. Z.-S. Blazya, A. Marie-Louise, S. Forest, Y. Chastel, A. Pineau, A. Awade, C. Grolleron, F. Moussy, Int. J. Mech. Sci. 46, 217 (2004)

    Article  Google Scholar 

  30. E. Rejovitzky, E. Altus, Int. J. Fatigue 37, 54 (2012)

    Article  Google Scholar 

  31. N.N. Nemeth, J. Compos. Mater. 48, 3395 (2014)

    Article  ADS  Google Scholar 

  32. P. Kumar, V. V Nukala, S. Simunovic, J. Phys. A 36, 11403 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. S. Zapperi, P. Ray, H.E. Stanley A. Vespignani, Phys. Rev. E 59, 5049 (1999)

    Article  ADS  Google Scholar 

  34. C.B. Picallo, J.M. López, S. Zapperi, M.J. Alava, Phys. Rev. Lett. 105, 155502 (2010)

    Article  ADS  Google Scholar 

  35. A. Shekhawat, S. Zapperi, J.P. Sethna, Phys. Rev. Lett. 110, 185505 (2013)

    Article  ADS  Google Scholar 

  36. M.J. Alava, P.K.V.V. Nukala, S. Zapperi, Int. J. Fract. 154, 51 (2008)

    Article  MATH  Google Scholar 

  37. L. Girard, J. Weiss, D. Amitrano, Phys. Rev. Lett. 108, 225502 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanja Janićević.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzato, C., Janićević, S. & Alava, M. The random loading problem in fuse networks. Eur. Phys. J. B 88, 183 (2015). https://doi.org/10.1140/epjb/e2015-60376-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60376-x

Keywords

Navigation