Skip to main content
Log in

Given enough choice, simple local rules percolate discontinuously

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

There is still much to discover about the mechanisms and nature of discontinuous percolation transitions. Much of the past work considers graph evolution algorithms known as Achlioptas processes in which a single edge is added to the graph from a set of k randomly chosen candidate edges at each timestep until a giant component emerges. Several Achlioptas processes seem to yield a discontinuous percolation transition, but it was proven by Riordan and Warnke that the transition must be continuous in the thermodynamic limit. However, they also proved that if the number k(n) of candidate edges increases with the number of nodes, then the percolation transition may be discontinuous. Here we attempt to find the simplest such process which yields a discontinuous transition in the thermodynamic limit. We introduce a process which considers only the degree of candidate edges and not component size. We calculate the critical point \(t_c = (1 - \theta (\tfrac{1} {k}))n\) and rigorously show that the critical window is of size \(O\left( {\tfrac{n} {{k(n)}}} \right)\). If k(n) grows very slowly, for example k(n) = log n, the critical window is barely sublinear and hence the phasetransition is discontinuous but appears continuous in finite systems. We also present arguments that Achlioptas processes with bounded size rules will always have continuous percolation transitions even with infinite choice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Stauffer, Introduction to percolation theory (Taylor & Francis, 1985)

  2. M.E.J. Newman, D.J. Watts, Phys. Rev. E 60, 7332 (1999)

    Article  ADS  Google Scholar 

  3. R. Cohen, K. Erez, D. ben Avraham, S. Havlin, Phys. Rev. Lett. 85, 4626 (2000)

    Article  ADS  Google Scholar 

  4. D.S. Callaway, M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. Lett. 85, 5468 (2000)

    Article  ADS  Google Scholar 

  5. C. Moore, M.E.J. Newman, Phys. Rev. E 61, 5678 (2000)

    Article  ADS  Google Scholar 

  6. M.E.J. Newman, Networks: An Introduction (Oxford University Press, New York, 2010)

  7. O. Riordan, L. Warnke, Ann. Appl. Probab. 22, 1450 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Azar, A.Z. Broder, A.R. Karlin, E. Upfal, SIAM J. Comput. 29, 180 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Mitzenmacher, A.W. Richa, R. Sitaraman, in Handbook of Randomized Computing (Kluwer, 2000), pp. 255–312

  10. M. Mitzenmacher, IEEE Trans. Parallel Distrib. Syst. 12, 1094 (2001)

    Article  Google Scholar 

  11. A. Sinclair, D. Vilenchik, Delaying satisfiability for random 2SAT, in Proceedings of the 13th International Conference on Approximation, and 14th International Conference on Randomization, and combinatorial optimization: algorithms and techniques (Springer-Verlag, Berlin, Heidelberg, 2010), pp. 710–723

  12. T. Bohman, A. Frieze, Random Struct. Algorithms 19, 75 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Achlioptas, R.M. D’Souza, J. Spencer, Science 323, 1453 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. R.A. da Costa, S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Phys. Rev. Lett. 105, 255701 (2010)

    Article  ADS  Google Scholar 

  15. J. Nagler, A. Levina, M. Timme, Nat. Phys. 7, 265 (2011)

    Article  Google Scholar 

  16. P. Grassberger, C. Christensen, G. Bizhani, S.W. Son, M. Paczuski, Phys. Rev. Lett. 106, 225701 (2011)

    Article  ADS  Google Scholar 

  17. S.S. Manna, A. Chatterjee, Physica A 390, 177 (2011)

    Article  ADS  Google Scholar 

  18. H.K. Lee, B.J. Kim, H. Park, Phys. Rev. E 84, 020101 (2011)

    ADS  Google Scholar 

  19. L. Tian, D.N. Shi, Phys. Lett. A 376, 286 (2012)

    Article  ADS  MATH  Google Scholar 

  20. O. Riordan, L. Warnke, Science 333, 322 (2011)

    Article  ADS  Google Scholar 

  21. W. Chen, R.M. D’Souza, Phys. Rev. Lett. 106, 115701 (2011)

    Article  ADS  Google Scholar 

  22. K. Panagiotou, R. Spöhel, A. Steger, H. Thomas, Electron. Notes Discrete Math. 38, 699 (2011)

    Article  Google Scholar 

  23. J. Nagler, T. Tiessen, H.W. Gutch, Phys. Rev. X 2, 031009 (2012)

    Google Scholar 

  24. H. Hwang, J. Herrmann, Y. Cho, B. Kahng, Science 339, 1185 (2013)

    Article  ADS  Google Scholar 

  25. J. Spencer, N. Wormald, Combinatorica 27, 587 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Janson, J. Spencer, arXiv:1005.4494v1 [math.CO] (2012)

  27. P. Erdős, A. Rényi, Magyar Tud. Akad. Mat. Kutató Int. Közl 5, 17 (1960)

    Google Scholar 

  28. R. Durrett, Probability: Theory and Examples, Cambridge Series in Statistical and Probabilistic Mathematics (Cambridge University Press, 2010)

  29. E.J. Friedman, A.S. Landsberg, Phys. Rev. Lett. 103, 255701 (2009)

    Article  ADS  Google Scholar 

  30. D. Aldous, Bernoulli 5, 3 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Waagen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waagen, A., D’Souza, R.M. Given enough choice, simple local rules percolate discontinuously. Eur. Phys. J. B 87, 304 (2014). https://doi.org/10.1140/epjb/e2014-50278-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50278-x

Keywords

Navigation