Skip to main content

Advertisement

Log in

Regular and chaotic regimes in Saltzman model of glacial climate dynamics under the influence of additive and parametric noise

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

It is well-known that the climate system, due to its nonlinearity, can be sensitive to stochastic forcing. New types of dynamical regimes caused by the noise-induced transitions are revealed on the basis of the classical climate model previously developed by Saltzman with co-authors and Nicolis. A complete parametric classification of dynamical regimes of this deterministic model is carried out. On the basis of this analysis, the influence of additive and parametric noises is studied. For weak noise, the climate system is localized nearby deterministic attractors. A mixture of the small and large amplitude oscillations caused by noise-induced transitions between equilibria and cycle attraction basins arise with increasing the noise intensity. The portion of large amplitude oscillations is estimated too. The parametric noise introduced in two system parameters demonstrates quite different system dynamics. Namely, the noise introduced in one system parameter increases its dispersion whereas in the other one leads to the stabilization of the climatic system near its unstable equilibrium with transitions from order to chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.G. Miller, G.S. Mountain, J.D. Wright, J.V. Browning, Oceanogr. 24, 40 (2011)

    Article  Google Scholar 

  2. B. de Boer, R.S.W. van de Wal, L.J. Lourens, R. Bintanja, T.J. Reerink, Clim. Dyn. 41, 1365 (2013)

    Article  Google Scholar 

  3. A.M. Selvam, Chaotic Climate Dynamics (Luniver Press, UK, 2007)

  4. M. Crucifix, Philos. Trans. R. Soc. A 370, 1140 (2012)

    Article  ADS  Google Scholar 

  5. B. Saltzman, Dynamical Paleoclimatology (Academic Press, San Diego, 2002)

  6. C. Nicolis, Tellus 39A, 1 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  7. J. Jouzel, V. Masson-Delmotte, WIREs Clim. Change 1, 654 (2010)

    Article  Google Scholar 

  8. N. Scafetta, J. Atm. Solar Terrest. Phys. 72, 951 (2010)

    Article  ADS  Google Scholar 

  9. R.B. Alley, J. Marotzke, W.D. Nordhaus, J.T. Overpeck, D.M. Peteet, R.A. Pielke Jr., R.T. Pierrehumbert, P.B. Rhines, T.F. Stocker, L.D. Talley, J.M. Wallace, Science 299, 2005 (2003)

    Article  ADS  Google Scholar 

  10. J. Thurow, L.C. Peterson, U. Harms, D.A. Hodell, H. Cheshire, H.-J. Brumsack, T. Irino, M. Schulz, V. Masson-Delmotte, R. Tada, Sci. Drill. 8, 46 (2009)

    Article  Google Scholar 

  11. J.W.C. White, R.B. Alley, J. Brigham-Grette, J.J. Fitzpatrick, A.E. Jennings, S.-J. Johnsen, G.H. Miller, R.S. Nerem, L. Polyak, Quarter. Sci. Rev. 29, 1716 (2010)

    Article  ADS  Google Scholar 

  12. J. Holmes, J. Lowe, E. Wolff, M. Srokosz, Glob. Planet. Change 79, 157 (2011)

    Article  ADS  Google Scholar 

  13. B. Saltzman, Adv. Geophys. 20, 183 (1978)

    Article  ADS  Google Scholar 

  14. B. Saltzman, R.E. Moritz, Tellus 32, 93 (1980)

    Article  ADS  Google Scholar 

  15. B. Saltzman, A. Sutera, A. Evenson, J. Atm. Sci. 38, 494 (1981)

    Article  ADS  Google Scholar 

  16. B. Saltzman, Tellus 34, 97 (1982)

    Article  ADS  Google Scholar 

  17. C. Nicolis, Tellus 36A, 1 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  18. C. Nicolis, J. Stat. Phys. 70, 3 (1993)

    Article  MATH  ADS  Google Scholar 

  19. L. Arnold, Random Dynamical Systems (Springer-Verlag, 1998)

  20. W. Horsthemke, R. Lefever, Noise-Induced Transitions (Springer, Berlin, 1984)

  21. S. Fedotov, I. Bashkirtseva, L. Ryashko, Phys. Rev. E 66, 066310 (2002)

    Article  ADS  Google Scholar 

  22. S. Fedotov, I. Bashkirtseva, L. Ryashko, Phys. Rev. E 73, 066307 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  23. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Eur. Phys. J. B 69, 1 (2009)

    Article  ADS  Google Scholar 

  24. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, 2001)

  25. I. Bashkirtseva, L. Ryashko, Chaos 21, 047514 (2011)

    Article  ADS  Google Scholar 

  26. D.V. Alexandrov, I.A. Bashkirtseva, A.P. Malygin, L.B. Ryashko, Pure Appl. Geophys. 170, 2273 (2013)

    Article  ADS  Google Scholar 

  27. P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, Berlin, 1992)

  28. P. Walters, An Introduction to Ergodic Theory (Springer, 1982)

  29. G. Benettin, L. Galgani, A. Giorgilli, J.M. Strelcyn, Meccanica 15, 9 (1980)

    Article  MATH  ADS  Google Scholar 

  30. P.D. Ditlevsen, M.S. Kristensen, K.K. Andersen, J. Climate 18, 2594 (2005)

    Article  ADS  Google Scholar 

  31. P.D. Ditlevsen, H. Svensmark, S. Johnsen, Nature 379, 810 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev B. Ryashko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, D., Bashkirtseva, I., Fedotov, S. et al. Regular and chaotic regimes in Saltzman model of glacial climate dynamics under the influence of additive and parametric noise. Eur. Phys. J. B 87, 227 (2014). https://doi.org/10.1140/epjb/e2014-50208-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50208-0

Keywords

Navigation