Skip to main content
Log in

Two-electron quantum dot in tilted magnetic fields: Sensitivity to the confinement model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Semiconductor quantum dots are conventionally treated within the effective-mass approximation and a harmonic model potential in the two-dimensional plane for the electron confinement. The validity of this approach depends on the type of the quantum-dot device as well as on the number of electrons confined in the system. Accurate modeling is particularly demanding in the few-particle regime, where screening effects are diminished and thus the system boundaries may have a considerable effect on the confining potential. Here we solve the numerically exact two-electron states in both harmonic and hard-wall model quantum dots subjected to tilted magnetic fields. Our numerical results enable direct comparison against experimental singlet-triplet energy splittings. Our analysis shows that hard and soft wall models produce qualitatively different results for quantum dots exposed to tilted magnetic fields. Hence, we are able to address the sensitivity of the two-body phenomena to the modeling, which is of high importance in realistic spin-qubit design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. Reimann, M. Manninen, Rev. Mod. Phys. 74, 1283 (2002)

    Article  ADS  Google Scholar 

  2. L.P. Kouwenhoven, D.G. Austing, S. Tarucha, Rep. Prog. Phys. 64, 701 (2001)

    Article  ADS  Google Scholar 

  3. R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007)

    Article  ADS  Google Scholar 

  4. J.M. Elzerman, R. Hanson, L.H. Willems van Beveren, B. Witkamp, L.M.K. Vandersypen, L.P. Kouwenhoven, Nature 430, 431 (2004)

    Article  ADS  Google Scholar 

  5. M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, J.J. Finley, Nature 432, 81 (2004)

    Article  ADS  Google Scholar 

  6. A.C. Johnson, J.R. Petta, J.M. Taylor, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Nature 435, 925 (2005)

    Article  ADS  Google Scholar 

  7. T. Meunier, I.T. Vink, L.H. Willems van Beveren, K.-J. Tielrooij, R. Hanson, F.H.L. Koppens, H.P. Tranitz, W. Wegscheider, L.P. Kouwenhoven, L.M.K. Vandersypen Phys. Rev. Lett. 98, 126601 (2007)

    Article  ADS  Google Scholar 

  8. J.P. Hansen, S.A. Sørngård, M. Førre, E. Räsänen, Phys. Rev. B 85, 035326 (2012)

    Article  ADS  Google Scholar 

  9. V.N. Golovach, A. Khaetskii, D. Loss, Phys. Rev. B 77, 045328 (2008)

    Article  ADS  Google Scholar 

  10. J.I. Climente, A. Bertoni, G. Bertoni, M. Rontani, E. Molinari, Phys. Rev. B 76, 085305 (2007)

    Article  ADS  Google Scholar 

  11. J.I. Climente, A. Bertoni, G. Bertoni, M. Rontani, E. Molinari, Phys. Rev. B 75, 081303 (R) (2007)

    Article  ADS  Google Scholar 

  12. M. Florescu, P. Hawrylak, Phys. Rev. B 73, 045304 (2006)

    Article  ADS  Google Scholar 

  13. D. Chaney, P.A. Maksym, Phys. Rev. B 75, 035323 (2007)

    Article  ADS  Google Scholar 

  14. J.I. Climente, C. Segarra, J. Planelles, New J. Phys. 15, 093009 (2013)

    Article  ADS  Google Scholar 

  15. J.P. Leburton, J. Pascual, C.M. Sotomayor-Torres, Phonons in Semiconductor Nanostructures (Kluwer Academic Publishers, Dordrecht, 1993)

  16. E. Räsänen, J. Könemann, R.J. Haug, M.J. Puska, R.M. Nieminen, Phys. Rev. B 70, 115308 (2004)

    Article  ADS  Google Scholar 

  17. E. Räsänen, Ph.D. Thesis, Helsinki University of Technology, 2004

  18. E. Räsänen, H. Saarikoski, A. Harju, M. Ciorga, A.S. Sachrajda, Phys. Rev. B 77, 041302(R) (2008)

    Article  ADS  Google Scholar 

  19. M. Rogge, E. Räsänen, R.J. Haug, Phys. Rev. Lett. 105, 046802 (2010)

    Article  ADS  Google Scholar 

  20. V. Popsueva, R. Nepstad, T. Birkeland, M. Førre, J.P. Hansen, E. Lindroth, E. Waltersson, Phys. Rev. B 76, 035303 (2007)

    Article  ADS  Google Scholar 

  21. F. Geerinckx, F.M. Peeters, J.T. Devreese, J. Appl. Phys. 68, 3435 (1990)

    Article  ADS  Google Scholar 

  22. C.S. Lent, Phys. Rev. B 43, 4179 (1991)

    Article  ADS  Google Scholar 

  23. E. Räsänen, M.J. Puska, R.M. Nieminen, Physica E 22, 490 (2004)

    Article  ADS  Google Scholar 

  24. A. Fuhrer, S. Lüscher, T. Heinzel, K. Ensslin, W. Wegscheider, M. Bichler, Phys. Rev. B 63, 125309 (2001)

    Article  ADS  Google Scholar 

  25. H.S. Cohl, A.R.P. Rau, J.E. Tohline, D.A. Browne, J.E. Cazes, E.I. Barnes, Phys. Rev. A 64, 052509 (2001)

    Article  ADS  Google Scholar 

  26. N.S. Simonovic, R.G. Nazmitdinov, Phys. Rev. A 78, 032115 (2008)

    Article  ADS  Google Scholar 

  27. Y. Nishi, Y. Tokura, J. Gupta, G. Austing, S. Tarucha, Phys. Rev. B 75, 121301 (R) (2007)

    Article  ADS  Google Scholar 

  28. E. Lieb, D. Mattis, J. Math. Phys. 3, 749 (1962)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Hansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frostad, T., Hansen, J.P., Wesslén, C.J. et al. Two-electron quantum dot in tilted magnetic fields: Sensitivity to the confinement model. Eur. Phys. J. B 86, 430 (2013). https://doi.org/10.1140/epjb/e2013-40677-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40677-x

Keywords

Navigation