Skip to main content
Log in

Theory and methods for rare events

  • Colloquium
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

This paper reviews the transition path theory (TPT) for activated events and summarizes a set of methods and algorithms to compute all relevant quantities of this theory: free energy, rate and mechanism of the event. We provide a set of examples to illustrate the applicability of the methods to problems in chemistry, biophysics and material science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Shaw et al., Anton Special-Purpose Machine for Molecular Dynamics Simulation, in Communications of the ACM (2008), Vol. 51, pp. 91–97

  2. A. Laio, M. Parrinello, Proc. Natl. Acad. Sci. 99, 12562 (2002)

    Article  ADS  Google Scholar 

  3. M. Sorensen, A. Voter, J. Chem. Phys. 112, 9599 (2000)

    Article  ADS  Google Scholar 

  4. L. Rosso, P. Minary, Z. Zhu, M. Tuckerman, J. Chem. Phys. 116, 4389 (2002)

    Article  ADS  Google Scholar 

  5. L. Rosso, M. Tuckerman, Mol. Simul. 28, 91 (2002)

    Article  Google Scholar 

  6. H. Grubmüller, Phys. Rev. E 52, 2893 (1995)

    Article  ADS  Google Scholar 

  7. L. Maragliano, E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006)

    Article  ADS  Google Scholar 

  8. G. Ciccotti, S. Meloni, Phys. Chem. Chem. Phys. 13, 5952 (2011)

    Article  Google Scholar 

  9. L. Maragliano, E. Vanden-Eijnden, J. Chem. Phys. 128, 184110 (2008)

    Article  ADS  Google Scholar 

  10. M. Monteferrante, S. Bonella, S. Meloni, G. Ciccotti, Mol. Simul. 35, 1116 (2009)

    Article  MATH  Google Scholar 

  11. H. Jónsson, G. Mills, K. Jacobsen, Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations (World Scientific, 1998)

  12. C. Dellago, P. Bolhuis, F. Csajka, D. Chandler, J. Chem. Phys. 108, 1964 (1998)

    Article  ADS  Google Scholar 

  13. B. Ensing, A. Laio, M. Parrinello, M. Klein, J. Phys. Chem. B 109, 6676 (2005)

    Article  Google Scholar 

  14. L. Maragliano, A. Fischer, E. Vanden-Eijnden, G. Ciccotti, J. Chem. Phys. 125, 024106 (2006)

    Article  ADS  Google Scholar 

  15. A. Faradjian, R. Elber, J. Chem. Phys. 120, 10880 (2004)

    Article  ADS  Google Scholar 

  16. R. Allen, D. Frenkel, P. ten Wolde, J. Chem. Phys. 124, 024102 (2006)

    Article  ADS  Google Scholar 

  17. D. Chandler, J. Chem. Phys. 68, 2959 (1978)

    Article  ADS  Google Scholar 

  18. E. Vanden-Eijnden, F. Tal, J. Chem. Phys. 123, 184103 (2005)

    Article  ADS  Google Scholar 

  19. E. Vanden-Eijnden, M. Venturoli, G. Ciccotti, R. Elber, J. Chem. Phys. 129, 174102 (2008)

    Article  ADS  Google Scholar 

  20. A. Laio, A. Rodriguez-Fortea, F. Gervasio, M. Ceccarelli, M. Parrinello, J. Phys. Chem. B 109, 6714 (2005)

    Article  Google Scholar 

  21. R. Durrett, Stochastic Calculus, A Practical Introduction (CRC, 1996), Vol. 96

  22. E. Vanden-Eijnden, in Computer Simulations in Condensed Matter: From Materials to Chemical Biology, edited by M. Ferrario, G. Ciccotti, K. Binder (Springer, Heidelberg, 2006), Vol. 2, p. 439

  23. W. E, E. Vanden-Eijnden, J. Statist. Phys. 123, 503 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. D. Chandler, in Classical and Quantum Dynamics in Condensed Phase Simulations – Proceedings of the International School of Physics, edited by B. Berne, G. Ciccotti, D. Cocker (World Scientific Publishing Co. Pte. Ltd., Singapore, 1998), pp. 3–23

  25. M. Tuckerman, Statistical Mechanics: Theory and Practice Through Molecular Simulation (Oxford University Press, 2010)

  26. D. Rebertus, B. Berne, D. Chandler, J. Chem. Phys. 70, 3395 (1979)

    Article  ADS  Google Scholar 

  27. J. VandeVondele, U. Rothlisberger, J. Phys. Chem. B 106, 203 (2002)

    Article  Google Scholar 

  28. G. Martyna, M. Klein, M. Tuckerman, J. Chem. Phys. 97, 2635 (1992)

    Article  ADS  Google Scholar 

  29. E. Vanden-Eijnden, Commun. Math. Sci. 1, 385 (2003)

    MathSciNet  MATH  Google Scholar 

  30. G.C. Papanicolaou, Introduction to the Asymptotics Analysis of Stochastic Equations (1976)

  31. A. Bensoussan, J.L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures (North-Holland, New York, 1978)

  32. P.N. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining (Addison-Wesley, 2006)

  33. J. Macqueen, Some methods for classification and analysis of the multivariate observations, in Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability (University of California Press), Vol. 233, pp. 281–297

  34. M. Ankerst, M.M. Breunig, H.P. Kriegel, J. Sander, Optics: Ordering Points To Identify the Clustering Structure, in ACM SIGMOD international conference on Management of data (ACM Press, 1999), pp. 49–60

  35. M. Ester, H.P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), edited by E. Simoudis, J. Han, U.M. Fayyad (AAAI Press, 1996), pp. 226–231

  36. D. Moroni, P. ten Wolde, P. Bolhuis, Phys. Rev. Lett. 94, 235703 (2005)

    Article  ADS  Google Scholar 

  37. P. Metzner, C. Schutte, E. Vanden-Eijnden, J. Chem. Phys. 125, 84110 (2006)

    Article  Google Scholar 

  38. B. Oksendal, Stochastic Differential Equations (Springer-Verlag, New York, Berlin, 1984)

  39. J.P. Ryckaert, G. Ciccotti, H. Berendsen, J. Comput. Phys. 23, 327 (1977)

    Article  ADS  Google Scholar 

  40. E. Vanden-Eijnden, M. Venturoli, J. Chem. Phys. 130, 194101 (2009)

    Article  ADS  Google Scholar 

  41. E. Vanden-Eijnden, M. Venturoli, J. Chem. Phys. 131, 044120 (2009)

    Article  ADS  Google Scholar 

  42. E. Carter, G. Ciccotti, J. Hynes, R. Kapral, Chem. Phys. Lett. 156, 472 (1989)

    Article  ADS  Google Scholar 

  43. B. Bogdanovi, M. Schwickardi, J. Alloys Compd. 1, 253 (1997)

    Google Scholar 

  44. X. Ke, I. Tanaka, Phys. Rev. B 71, 024117 (2005)

    Article  ADS  Google Scholar 

  45. C. Araujo, S. Li, R. Ahuja, P. Jena, Phys. Rev. B 72, 165101 (2005)

    Article  ADS  Google Scholar 

  46. M. Monteferrante, S. Bonella, S. Meloni, E. Vanden-Eijnden, G. Ciccotti, Sci. Model. Simul. 15, 187 (2009)

    Article  Google Scholar 

  47. M. Sprik, Chem. Phys. 258, 139 (2000)

    Article  ADS  Google Scholar 

  48. M. Monteferrante, S. Bonella, G. Ciccotti, Phys. Chem. Chem. Phys. PCCP 13, 13177 (2011)

    Google Scholar 

  49. J. Kendrew, R. Dickerson, B. Strandberg, R. Hart, D. Davies, D. Phillips, V. Shore, Nature 185, 422 (1960)

    Article  ADS  Google Scholar 

  50. L. Maragliano, G. Cottone, G. Ciccotti, E. Vanden-Eijnden, J. Am. Chem. Soc. 132, 1010 (2010)

    Article  Google Scholar 

  51. O. Palumbo, R. Cantelli, A. Paolone, C. Jensen, S. Srinivasan, J. Phys. Chem. B 109, 1168 (2005)

    Article  Google Scholar 

  52. J. Voss, Q. Shi, H. Jacobsen, M. Zamponi, K. Lefmann, T. Vegge, J. Phys. Chem. B 111, 3886 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Bonella or S. Meloni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonella, S., Meloni, S. & Ciccotti, G. Theory and methods for rare events. Eur. Phys. J. B 85, 97 (2012). https://doi.org/10.1140/epjb/e2012-20366-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20366-2

Keywords

Navigation