Skip to main content

Advertisement

Log in

Testing an agent-based model of bacterial cell motility: How nutrient concentration affects speed distribution

  • Interdisciplinary Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We revisit a recently proposed agent-based model of active biological motion and compare its predictions with own experimental findings for the speed distribution of bacterial cells, Salmonella typhimurium. Agents move according to a stochastic dynamics and use energy stored in an internal depot for metabolism and active motion. We discuss different assumptions of how the conversion from internal to kinetic energy d(v) may depend on the actual speed, to conclude that d 2 v ξ with either ξ = 2 or 1 < ξ < 2 are promising hypotheses. To test these, we compare the model’s prediction with the speed distribution of bacteria which were obtained in media of different nutrient concentration and at different times. We find that both hypotheses are in line with the experimental observations, with ξ between 1.67 and 2.0. Regarding the influence of a higher nutrient concentration, we conclude that the take-up of energy by bacterial cells is indeed increased. But this energy is not used to increase the speed, with 40 μm/s as the most probable value of the speed distribution, but is rather spend on metabolism and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Ebeling, F. Schweitzer, B. Tilch, BioSystems 49, 17 (1999)

    Article  Google Scholar 

  2. O. Steuernagel, W. Ebeling, V. Calenbuhr, Chaos Solitons Fractals 4, 1917 (1994)

    Article  ADS  MATH  Google Scholar 

  3. M. Birbaumer, F. Schweitzer, Eur. Phys. J. B (2011), DOI: 10.1140/epjb/e2011-20283-x

  4. M. Schienbein, H. Gruler, Bull. Math. Biol. 55, 585 (1993)

    MATH  Google Scholar 

  5. F. Schweitzer, Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences (Springer, 2003)

  6. F. Schweitzer, W. Ebeling, B. Tilch, Phys. Rev. Lett. 80, 5044 (1998)

    Article  ADS  Google Scholar 

  7. F. Schweitzer, B. Tilch, Phys. Rev. E 66, 026113 (2002)

    Article  ADS  Google Scholar 

  8. W. Ebeling, F. Schweitzer, Nova Acta Leopoldina NF 88, 169 (2003)

    MathSciNet  MATH  Google Scholar 

  9. C. Condat, G. Sibona, Physica D: Nonlinear Phenomena 168, 235 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  10. U. Erdmann, W. Ebeling, L. Schimansky-Geier, F. Schweitzer, Eur. Phys. J. B Cond. Matter 15, 105 (2000)

    Article  ADS  Google Scholar 

  11. F. Schweitzer, W. Ebeling, B. Tilch, Phys. Rev. E 64, 21110 (2001)

    Article  ADS  Google Scholar 

  12. C. Condat, G. Sibona, Physica A 316, 203 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  13. G. Sibona, Phys. Rev. E 76, 11919 (2007)

    Article  ADS  Google Scholar 

  14. C. Condat, J. Jäckle, S. Menchón, Phys. Rev. E 72, 21909 (2005)

    Article  ADS  Google Scholar 

  15. H. Berg, Ann. Rev. Biochem. 72, 19 (2003)

    Article  Google Scholar 

  16. Y. Magariyama, S. Sugiyama, S. Kudo, FEMS Microbiology Letters 199, 125 (2001)

    Article  Google Scholar 

  17. R. Berry, J. Armitage, Adv. Microb. Physiol. 41, 291 (1999)

    Article  Google Scholar 

  18. M. Manson, P. Tedesco, H. Berg, J. Mol. Biol. 138, 541 (1980)

    Article  Google Scholar 

  19. X. Chen, H. Berg, Biophys. J. 78, 1036 (2000)

    Article  ADS  Google Scholar 

  20. B. Stecher, M. Barthel, M. Schlumberger, L. Haberli, W. Rabsch, M. Kremer, W. Hardt, Cell. Microbiol. 10, 1166 (2008)

    Article  Google Scholar 

  21. B. Winnen, M. Schlumberger, A. Sturm, K. Schüpbach, S. Siebenmann, P. Jenny, W. Hardt, PLoS ONE 3, e2178 (2008)

  22. P. Romanczuk, L. Schimansky-Geier, Phys. Rev. Lett. 106, 230601 (2011)

    Article  ADS  Google Scholar 

  23. S. Sheather, M. Jones, J. Roy. Statist. Soc. Ser. B 53, 683 (1991)

    MathSciNet  MATH  Google Scholar 

  24. Q. Liao, G. Subramanian, M. DeLisa, D. Koch, M. Wu, Phys. Fluids 19, 061701 (2007)

    Article  ADS  Google Scholar 

  25. J. Sherwood, J. Sung, R. Ford, E. Fernandez, J. Maneval, J. Smith, Environ. Sci. Technol. 37, 781 (2003)

    Article  Google Scholar 

  26. M. Levin, C. Morton-Firth, W. Abouhamad, R. Bourret, D. Bray, Biophys. J. 74, 175 (1998)

    Article  ADS  Google Scholar 

  27. J. Mitchell, Microb. Ecol. 22, 227 (1991)

    Article  Google Scholar 

  28. G. Lowe, M. Meister, H. Berg, Nature 325, 637 (1987)

    Article  ADS  Google Scholar 

  29. E. Greenberg, E. Canale-Parola, J. Bacteriol. 132, 356 (1977)

    Google Scholar 

  30. I. Sbalzarini, P. Koumoutsakos, J. Struct. Biol. 151, 182 (2005)

    Article  Google Scholar 

  31. M. Abramoff, P. Magelhaes, S. Ram, Biophotonics Int. 11, 36 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Schweitzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, V., Birbaumer, M. & Schweitzer, F. Testing an agent-based model of bacterial cell motility: How nutrient concentration affects speed distribution. Eur. Phys. J. B 82, 235–244 (2011). https://doi.org/10.1140/epjb/e2011-20425-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-20425-2

Keywords

Navigation