Skip to main content
Log in

A dissipative network model with neighboring activation

  • Regular Article
  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We propose a network model with dissipative structure taking into consideration the effect of neighboring activation and individual dissipation. Nodes may feel tired of interactions with new nodes step by step, and drop out of the network evolution. However, these dormant nodes can become active again following neighbors. During the whole evolution only active nodes have opportunities to receive new links. We analyze user behavior of a real Internet forum, and the statistical characteristics of this forum are analogous to our model. Under the influence of motivation and dissipation, the degree distribution of our network model decays as a power law with a diversity of tunable power exponents. Furthermore, the network has high clustering, small average path length and positive assortativity coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Albert, A.L. Barabasi, Rev. Mod. Phys. 74, 47 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Y. Kim, Y. Ko, S.H. Yook, Phys. Rev. E 81, 011139 (2010)

    Article  ADS  Google Scholar 

  3. J. Camacho, R. Guimera R, L.A.N. Amaral, Phys. Rev. Lett. 88, 228102 (2002)

    Article  ADS  Google Scholar 

  4. S.N. Dorogovtsev, J.F. Mendes, Phys. Rev. E 63, 056125 (2001)

    Article  ADS  Google Scholar 

  5. W. Li, X. Cai, Phys. Rev. E 69, 046106 (2004)

    Article  ADS  Google Scholar 

  6. G. Yan, Z.Q. Fu, J. Ren, W.X. Wang, Phys. Rev. E 75, 016108 (2007)

    Article  ADS  Google Scholar 

  7. L.A. Adamic et al., Science 287, 2115 (2000)

    Article  ADS  Google Scholar 

  8. R. Pastor-Satorras, A. Vazquez, A. Vespignani, Phys. Rev. Lett. 87, 258701 (2001)

    Article  ADS  Google Scholar 

  9. H. Dietz, M. Rief, Phys. Rev. Lett. 100, 098101 (2008)

    Article  ADS  Google Scholar 

  10. M.E.J. Newman, Phys. Rev. E 64, 016132 (2001)

    Article  ADS  Google Scholar 

  11. M.E.J. Newman, Proc. Natl. Acad. Sci. 98, 404 (2001)

    Article  ADS  MATH  Google Scholar 

  12. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  13. M.E. Newman, D.J. Watts, Phys. Lett. A 263, 341 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. A.L. Barabasi, R. Albert, Science 286, 509 (1999)

    Article  MathSciNet  Google Scholar 

  15. R. Albert, A.L. Barabasi, Phys. Rev. Lett. 85, 5234 (2000)

    Article  ADS  Google Scholar 

  16. Z.X. Huang, X.R. Wang, H. Zhu, Chinese Phys. B 13, 273 (2004)

    Article  ADS  Google Scholar 

  17. W.X. Wang, B.H. Wang, B. Hu, G. Yan, Q. Ou, Phys. Rev. Lett. 94, 188702 (2005)

    Article  ADS  Google Scholar 

  18. A. Santiago, R.M. Benito, Eur. Phys. J. B 76, 557 (2010)

    Article  ADS  MATH  Google Scholar 

  19. Q. Guo et al., Physica A 371, 814 (2006)

    Article  ADS  Google Scholar 

  20. X.P. Xu, F. Liu, W. Li, Chinese Phys. Lett. 23, 750 (2006)

    Article  ADS  Google Scholar 

  21. C.S. Rodrigues, A.P.S. Moura, C. Grebogi, Phys. Rev. E 80, 026205 (2009)

    Article  ADS  Google Scholar 

  22. E. Bertin, O. Dauchot, Phys. Rev. Lett. 102, 160601 (2009)

    Article  ADS  Google Scholar 

  23. S.N. Dorogovtsev, J.F.F. Mendes, Phys. Rev. E 62, 1842 (2000)

    Article  ADS  Google Scholar 

  24. K. Klemm, V.M. Eguiluz, Phys. Rev. E 65, 036123 (2002)

    Article  ADS  Google Scholar 

  25. M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002)

    Article  ADS  Google Scholar 

  26. F. Wang, Y. Moreno, Y. Sun, Phys. Rev. E 73, 036123 (2006)

    Article  ADS  Google Scholar 

  27. F. Fu, L.H. Liu, L. Wang, Physica A 387, 675 (2008)

    Article  ADS  Google Scholar 

  28. K.I. EGoh et al., Phys. Rev. E 73, 066123 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, F., Liu, Y., Zhu, J. et al. A dissipative network model with neighboring activation. Eur. Phys. J. B 84, 115–120 (2011). https://doi.org/10.1140/epjb/e2011-20286-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-20286-7

Keywords

Navigation