Skip to main content
Log in

A travelling cluster approximation for lattice fermions strongly coupled to classical degrees of freedom

  • Solid and Condensed State Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We suggest and implement a new Monte Carlo strategy for correlated models involving fermions strongly coupled to classical degrees of freedom, with accurate handling of quenched disorder as well. Current methods iteratively diagonalise the full Hamiltonian for a system of N sites with computation time τN ∼N4. This limits achievable sizes to N ∼100. In our method the energy cost of a Monte Carlo update is computed from the Hamiltonian of a cluster, of size Nc, constructed around the reference site, and embedded in the larger system. As MC steps sweep over the system, the cluster Hamiltonian also moves, being reconstructed at each site where an update is attempted. In this method τN,Nc ∼NNc3. Our results are obviously exact when Nc=N, and converge quickly to this asymptote with increasing Nc, particularly in the presence of disorder. We provide detailed benchmarks on the Holstein model and the double exchange model. The `locality' of the energy cost, as evidenced by our results, suggests that several important but inaccessible problems can now be handled with control. This method forms the basis of our studies in Europhys. Lett. 68, 564 (2004), Phys. Rev. Lett. 94, 136601 (2005), and Phys. Rev. Lett. 96, 016602 (2006).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S.R. White, Phys. Rev. Lett. 69, 2863 (1992); for a recent review see K. Hallberg, Theoretical Methods for Strongly Correlated Electrons, CRM Series in Mathematical Physics, edited by D. Sénéchal, A.-M. Tremblay, C. Bourbonnais (Springer, 2004)

    Article  ADS  Google Scholar 

  • A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996); for recent reviews see, Tudor Stanescu and Gabriel Kotliar, Phys. Rev. B 70, 205112 (2004); A. Georges, Lectures on the Physics of Highly Correlated Electron Systems VIII (2004) 3, American Institute of Physics Conference Proceedings, Vol. 715

    Article  MathSciNet  ADS  Google Scholar 

  • A.B. Migdal, Sov. Phys. JETP 7, 996 (1958); V.V. Kabanov, O.Y. Mashtakov, Phys. Rev. B 47, 6060 (1993)

    MathSciNet  Google Scholar 

  • R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)

    Article  ADS  Google Scholar 

  • A.J. Millis, B.I. Shraiman, R. Mueller, Phys. Rev. Lett. 77, 175 (1996)

    Article  ADS  Google Scholar 

  • See e.g., S. Yunoki, J. Hu, A.L. Malvezzi, A. Moreo, N. Furukawa, E. Dagotto, Phys. Rev. Lett. 80, 845 (1998); S. Yunoki, T. Hotta, E. Dagotto, Phys. Rev. Lett. 84, 3714 (2000)

    Article  ADS  Google Scholar 

  • M.J. Calderon, L. Brey, Phys. Rev. B 58, 3286 (1998); Y. Motome, N. Furukawa, J. Phys. Soc. Jpn 68, 3853 (1999)

    Article  ADS  Google Scholar 

  • G. Alvarez, M. Mayr, E. Dagotto, Phys. Rev. Lett. 89, 277202 (2002)

    Article  ADS  Google Scholar 

  • S. Kumar, P. Majumdar, Phys. Rev. Lett. 91, 246602-1 (2003)

    Article  ADS  Google Scholar 

  • S. Kumar, P. Majumdar, Phys. Rev. Lett. 92, 126602 (2004)

    Article  ADS  Google Scholar 

  • S. Yunoki et al., Phys. Rev. Lett. 80, 845 (1998), E. Dagotto, et al., Phys. Rev. B 58, 6414 (1998)

    Article  Google Scholar 

  • Y. Motome, N. Furukawa, J. Phys. Soc. Jpn 72, 2126 (2003)

    Article  Google Scholar 

  • Y. Motome, N. Furukawa, J. Phys. Chem. Solids 63, 1357 (2002)

    Article  ADS  Google Scholar 

  • J.L. Alonso, L.A. Fernandez, F. Guinea, V. Laliena, V. Martin-Mayor, Nucl. Phys. B 596, 587 (2001)

    Article  MATH  ADS  Google Scholar 

  • S. Kumar, P. Majumdar, Eur. Phys. J. B 46, 315 (2005)

    Article  ADS  Google Scholar 

  • A.J. Millis, R. Mueller, B.I. Shraiman, Phys. Rev. B 54, 5389 (1996)

    Article  ADS  Google Scholar 

  • S. Ciuchi, F. de Pasquale, Phys. Rev. B 59, 5431 (1999)

    Article  ADS  Google Scholar 

  • S. Blawid, A.J. Millis, Phys. Rev. B 62, 2424 (2000)

    Article  ADS  Google Scholar 

  • See, e.g., A.H. Romero, D.W. Brown, K. Lindenberg, Phys. Rev. B 60, 14080 (1999)

    Article  Google Scholar 

  • B.P. Sekhar, S. Kumar, P. Majumdar, Europhys. Lett. 68, 564 (2004)

    Article  ADS  Google Scholar 

  • S. Kumar, P. Majumdar, Phys. Rev. Lett. 94, 136601 (2005)

    Article  ADS  Google Scholar 

  • S. Kumar, P. Majumdar, Phys. Rev. Lett. 96, 016602 (2006)

    Article  ADS  Google Scholar 

  • See, e.g., D. Emin, M.-N. Bussac, Phys. Rev. B 49, 14290 (1994), for the interplay of extrinsic disorder and EP coupling

    Article  Google Scholar 

  • W. Wang, Phys. Rev. Lett. 66, 1438 (1991); W. Kohn, Phys. Rev. Lett. 76, 3168 (1996), S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999)

    Article  ADS  Google Scholar 

  • E. Prodan, W. Kohn, PNAS 102, 11635 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Majumdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Majumdar, P. A travelling cluster approximation for lattice fermions strongly coupled to classical degrees of freedom. Eur. Phys. J. B 50, 571–579 (2006). https://doi.org/10.1140/epjb/e2006-00173-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2006-00173-2

PACS.

Navigation