Skip to main content
Log in

Transformations for a generalized variable-coefficient nonlinear Schrödinger model from plasma physics, arterial mechanics and optical fibers with symbolic computation

  • Rapid Notes
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

Describing space and laboratory plasmas, arterial mechanics and optical fibers, a generalized variable-coefficient nonlinear Schrödinger model is hereby under investigation. Four transformations have been constructed from such a model to the known standard and cylindrical nonlinear Schrödinger equations with the relevant constraints on the variable coefficients presented. Symbolic computation is performed. Specialities of those transformations are discussed. Analytic solutions of such a generalized variable-coefficient model can be obtained via those transformations from the analytic solutions of the standard and cylindrical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • V.N. Serkin, A. Hasegawa, Phys. Rev. Lett. 85, 4502 (2000)

    Article  PubMed  Google Scholar 

  • R.C. Yang, L. Li, R.Y. Hao, Z.H. Li, G.S. Zhou, Phys. Rev. E 71, 036616 (2005)

    Article  Google Scholar 

  • V.I. Kruglov, A.C. Peacock, J.D. Harvey, Phys. Rev. E 71, 056619 (2005)

    Article  Google Scholar 

  • W.P. Hong, Opt. Comm. 213, 173 (2002); W.P. Hong, Z. Naturforsch. A 58, 667 (2003)

    Article  Google Scholar 

  • J.K. Xue, Phys. Plasmas 11, 1860 (2004)

    Article  Google Scholar 

  • V. Serkin, M. Matsumoto, T. Belyaeva, Opt. Comm. 196, 159 (2001)

    Article  Google Scholar 

  • M. Ablowitz, T. Hirooka, IEEE J. Selected Top. Quant. Electronics 8, 603 (2002); B. Tian, Y.T. Gao, Phys. Lett. A 342, 228 (2005)

    Article  Google Scholar 

  • S. Medvedev, O. Shtyrina, S. Musher, M. Fedoruk, Phys. Rev. E 66, 066607 (2002)

    Article  Google Scholar 

  • A. Hasegawa, Y. Kodama, Solitons in Optical Communications (Clarendon Press, Oxford, 1995); A. Biswas, Fiber & Integrated Optics 21, 115 (2002); A. Biswas, J. Nonl. Opt. Phys. Mat. 12, 17 (2003); A. Biswas, J. Opt. A 4, 84 (2002)

    Google Scholar 

  • Y.T. Gao, B. Tian, Computers Math. Applic. 40, 1107 (2000); B. Tian, Y.T. Gao, Computers Math. Applic. 31, 115 (1996); V. Marikhin, A. Shabat, M. Boiti, F. Pempinelli, J. Exp. Theor. Phys. 90, 553 (2000); A. Khater, M. Moussa, S. Abdul-Aziz, Chaos, Solitons & Fractals 15, 1 (2003); A. Wingen, K. Spatschek, S. Medvedev, Phys. Rev. E 68, 046610 (2003); H.N. Xuan, C.J. Wang, D.F. Zhang, Z. Naturforsch. A 59, 196 (2004)

    Article  Google Scholar 

  • Y.T. Gao, B. Tian, Int. J. Mod. Phys. C 12, 197 (2001)

    Article  Google Scholar 

  • Y.T. Gao, B. Tian, Phys. Plasmas 10, 4306 (2003)

    Google Scholar 

  • H. Kuehl, C. Zhang, Phys. Fluids B 2, 1511 (1990)

    Article  Google Scholar 

  • Y.T. Gao, B. Tian, Phys. Plasmas 8, 67 (2001)

    Article  Google Scholar 

  • B. Tian, Y.T. Gao, X.G. Xu, J. Mod. Optics 50, 2185 (2003)

    Article  Google Scholar 

  • H. Demiray, Eur. J. Mech. A 22, 603 (2003)

    Article  Google Scholar 

  • D. Zwillinger, Handbook of Differential Equations (Academic Press, Boston, 1989); G. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic Press, New York, 2001); Applications of Nonlinear Fiber Optics (Academic Press, New York, 2001); S.L. Palacios, J. Nonlinear Opt. Phys. Mat. 10, 403 (2001); Y. Kubota, T. Odagaki, Phys. Rev. E 68, 026603 (2003)

    Article  Google Scholar 

  • T. Murphy, IEEE Photonics Tech. Lett. 14, 1424 (2002)

    Article  Google Scholar 

  • X.C. Li, S.L. Cai, B. Xu et al., Advanced Mathematics, (Higher Edu. Press, Beijing, 1999)

  • A. Ivlev, G. Morfill, Phys. Rev. E 63, 026412 (2001); I. Kourakis, P.K. Shukla, Phys. Plasmas 10, 3459 (2003); J.K. Xue, R.G. Tang, Phys. Scr. 67, 74 (2003); R.A. Tang, J.K. Xue, Phys. Plasmas 10, 3800 (2003)

    Google Scholar 

  • B. Tian, Y.T. Gao, Phys. Lett. A 340, 243 (2005); B. Tian, Y.T. Gao, Phys. Plasmas 12, 054701 (2005); B. Tian, Y.T. Gao, Eur. Phys. J. D 33, 59 (2005); B. Tian, Y.T. Gao, Phys. Lett. A 340, 449 (2005); B. Tian, Y.T. Gao, Phys. Plasmas (Lett.) 12, 070703 (2005)

    Article  Google Scholar 

  • S. Glendinning, S. Dixit, B. Hammel, D. Kalantar, M. Key, J. Kilkenny, J. Knauer, D. Pennington, B. Remington, R. Wallace, S. Weber, Phys. Rev. Lett. 78, 3318 (1997); S. Bodner, D. Colombant, J. Gardner, R. Lehmberg, S. Obenschain, L. Phillips, A. Schmitt, J. Sethian, R. McCrory, W. Seka, C. Verdon, J. Knauer, B. Afeyan, H. Powell, Phys. Plasmas 5, 1901 (1998); G. Dimonte, Phys. Plasmas 6, 2009 (1999); G. Dimonte, Phys. Plasmas 7, 2255 (2000); J. Knauer, R. Betti, D. Bradley, T. Boehly, T. Collins, V. Goncharov, P. McKenty, D. Meyerhofer, V. Smalyuk, C. Verdon, S. Glendinning, D. Kalantar, R. Watt, Phys. Plasmas 7, 338 (2000); R. Drake, P. Keiter, Phys. Plasmas 9, 382 (2002); G. Birk, Phys. Plasmas 9, 745 (2002)

    Article  Google Scholar 

  • M. Wadati, T. Yajima, T. Iizuka, Chaos Solitons Fractals 3, 249 (1991); A. Khater, D. Callebaut, R. Ibrahim, Phys. Plasmas 5, 395 (1998)

    Article  Google Scholar 

  • J. Chen, Y. Wen, X. Yang, Acta Photon. Sin. 27, 396 (1998) (in Chinese)

    Google Scholar 

  • K. Nakkeeran, A. Moubissi, P. Dinda, S. Wabnitz, Opt. Lett. 26, 1544 (2001)

    Google Scholar 

  • G.Q. Yang, X.Y. Yang, Stud. Opt. Comm. 113, 40 (2002) (in Chinese)

    Google Scholar 

  • T.J. Pedley, Fluid Mechanics of Large Blood Vessels (Cambridge Univ. Press, Cambridge, 1980); A.J. Rachev, J. Biomech. Engrg. ASME 102, 119 (1980); Y.C. Fung, Biodynamics: Circulation (Springer-Verlag, New York, 1981); R.J. Tait, T.B. Moodie, Wave Motion 6, 197 (1984); Y. Hashizume, J. Phys. Soc. Jpn. 54, 3305 (1985); Y. Yomosa, J. Phys. Soc. Jpn. 56, 506 (1987); H.A. Erbay, S. Erbay, S. Dost, Acta Mech. 95, 87 (1992); H. Demiray, Int. J. Engrg. Sci. 30, 1607 (1992); H. Demiray, Bull. Math. Biol. 58, 939 (1996)

    Google Scholar 

  • M.P. Barnett, J.F. Capitani, J. Von Zur Gathen, J. Gerhard, Int. J. Quantum Chem. 100, 80 (2004); G. Das, J. Sarma, Phys. Plasmas 6, 4394 (1999); Z.Y. Yan, H.Q. Zhang, J. Phys. A 34, 1785 (2001); Sirendaoreji, J. Phys. A 32, 6897 (1999); R. Ibrahim, Chaos Solitons Fractals 16, 675 (2003); W.P. Hong, S.H. Park, Int. J. Mod. Phys. C 15, 363 (2004); F.D. Xie, X.S. Gao, Comm. Theor. Phys. 41, 353 (2004); B. Li, Y. Chen, H.N. Xuan, H.Q. Zhang, Appl. Math. Comput. 152, 581 (2004); B. Tian, Y.T. Gao, Eur. Phys. J. B 42, 441 (2004); B. Tian, Y.T. Gao, Nuov. Cim. B 118, 175 (2003); B. Tian, Y.T. Gao, Computers Math. Applic. 45, 731 (2003)

    Article  Google Scholar 

  • G.P. Leclert, C.F. Karney, A. Bers, D.J. Kaup, Phys. Fluids 22, 1543 (1979); M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge Univ. Press, Cambridge, 1992)

    Google Scholar 

  • R. Grimshaw, Proc. R. Soc. Lond. A 368, 377 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Tian Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, B., Shan, WR., Zhang, CY. et al. Transformations for a generalized variable-coefficient nonlinear Schrödinger model from plasma physics, arterial mechanics and optical fibers with symbolic computation. Eur. Phys. J. B 47, 329–332 (2005). https://doi.org/10.1140/epjb/e2005-00348-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2005-00348-3

Keywords

Navigation