Skip to main content
Log in

Melting evolution and diffusion behavior of vanadium nanoparticles

  • Surfaces and Interfaces
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

Molecular dynamics calculations have been performed to study the melting evolution, atomic diffusion and vibrational behavior of bcc metal vanadium nanoparticles with the number of atoms ranging from 537 to 28475 (diameters around 2–9 nm). The interactions between atoms are described using an analytic embedded-atom method. The obtained results reveal that the melting temperatures of nanoparticles are inversely proportional to the reciprocal of the nanoparticle size, and are in good agreement with the predictions of the thermodynamic liquid-drop model. The melting process can be described as occurring in two stages, firstly the stepwise premelting of the surface layer with a thickness of 2–3 times the perfect lattice constant, and then the abrupt overall melting of the whole cluster. The heats of fusion of nanoparticles are also inversely proportional to the reciprocal of the nanoparticle size. The diffusion is mainly localized to the surface layer at low temperatures and increases with the reduction of nanoparticle size, with the temperature being held constant. The radial mean square vibration amplitude (RMSVA) is developed to study the anharmonic effect on surface shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ph. Buffat, J.P. Borel, Phys. Rev. A 13, 2287 (1976)

    Article  Google Scholar 

  • K.K. Nanda, S.N. Sahu, S.N. Behera, Phys. Rev. A 66, 013208 (2002)

    Article  Google Scholar 

  • Q. Jiang, S. Zhang, M. Zhao, Mater. Chem. Phys. 82, 225 (2003)

    Article  Google Scholar 

  • C.L. Cleveland, U. Landman, W.D. Luedtke, J. Phys. Chem. 98, 6272 (1994)

    Article  Google Scholar 

  • T. Bachels, H.J. Guntherodt, R. Schafer, Phys. Rev. Lett. 85, 1250 (2000)

    Article  PubMed  Google Scholar 

  • S.J. Zhao, S.Q. Wang, D.Y. Cheng, H.Q. Ye, J. Phys. Chem. B 105, 12857 (2001)

    Article  Google Scholar 

  • A.A. Shvartsburg, M.F. Jarrold, Phys. Rev. Lett. 85, 2530 (2000)

    Article  PubMed  Google Scholar 

  • C.L. Cleveland, W.D. Luedtke, U. Landman, Phys. Rev. Lett. 81, 2036 (1998)

    CAS  Google Scholar 

  • C.L. Cleveland, W.D. Luedtke, U. Landman, Phys. Rev. B 60, 5065 (1999)

    Article  Google Scholar 

  • H. Lei, J. Phys: Condens. Matter. 13, 3023 (2001)

    Article  Google Scholar 

  • L. Wang, Y. Zhang, X. Bian, Y. Chen, Phys. Lett. A 310, 197 (2003)

    Article  Google Scholar 

  • S. Ozcelik, Z.B. Guvenc, Surf. Sci. 532-535, 312 (2003)

    Google Scholar 

  • S.L. Lai, J.Y. Guo, V. Petrova, G. Ramanath, L.H. Allen, Phys. Rev. Lett. 77, 100 (1996)

    Google Scholar 

  • L.J. Lewis, P. Jensen, J.L. Barrat, Phys. Rev. B 56, 2248 (1997)

    Article  Google Scholar 

  • F. Baletto, A. Rapallo, G. Rossi, R. Ferrando, Phys. Rev. B 69, 235421 (2004)

    Article  Google Scholar 

  • M. Schmidt, R. Kusche, B. von Issendorff, H. Haberland, Nature 393, 238 (1998)

    Article  Google Scholar 

  • S.P. Huang, P.B. Balbuena, J. Phys. Chem. 106, 7225 (2002)

    Google Scholar 

  • G. Rossi, A. Rapallo, A. Fortunelli, C. Mottet, F. Baletto, R. Ferrando, Phys. Rev. Lett. 93, 105503 (2004)

    PubMed  Google Scholar 

  • V. Sorkin, E. Polturak, Joan Adler, Phys. Rev. B 68, 174102, 174103 (2003)

    Google Scholar 

  • W. Hu, X. Shu, B. Zhang, Comput. Mater. Sci. 23, 175 (2002)

    Google Scholar 

  • W. Hu, M. Fukumoto, Model. Simul. Mater. Sci. Eng. 10, 707 (2002)

    Google Scholar 

  • W. Hu, H. Deng, X. Yuan, M. Fukumoto, Eur. Phys. J. B 34, 429 (2003)

    Google Scholar 

  • S. Nose, J. Chem. Phys. 81, 511 (1984)

    Google Scholar 

  • W. Hoover, Phys. Rev. A 31, 1695 (1985)

    PubMed  Google Scholar 

  • Handbook of Chemistry and Physics, 81’st edn., edited by D.R. Lide, (CRC Press, 2000–2001)

  • R.W. Siegel, in Proceedings of Yamada Conference on Point Defect Internations in Metals, edited by J. Takamura, M. Doyama, M. Kiritani (University of Tokyo Press, Tokyo, 1982), p. 533

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangyu Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, W., Xiao, S., Yang, J. et al. Melting evolution and diffusion behavior of vanadium nanoparticles. Eur. Phys. J. B 45, 547–554 (2005). https://doi.org/10.1140/epjb/e2005-00210-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2005-00210-8

Keywords

Navigation