Skip to main content
Log in

Suppression of superconductivity by non-magnetic disorder in the organic superconductor \(\mathsf{(TMTSF)_{2}(ClO_{4})_{(1-x)}(ReO_{4})_{x}}\)

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We present a study of the superconducting properties (T c and H c2) in the solid solution \({\rm (TMTSF)_{2}(ClO}_{4})_{(1-x)}{\rm (ReO_{4})}_{x}\), with a \(\rm ReO_{4}^{-}\) nominal concentration up to \(x = 6\%\). The dramatic suppression of T c when the residual resistivity is increased upon alloying with no modification of the Fermi surface is the signature of non-conventional superconductivity. This behaviour strongly supports p or d wave pairing in quasi one dimensional organic superconductors. The determination of the electron lifetime in the normal state at low temperature confirms that a single particle Drude model is unable to explain the temperature dependence of the conductivity and that a very narrow zero frequency mode must be taken into account for the interpretation of the transport properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Jérome, A. Mazaud, M. Ribault, K. Bechgaard, J. Phys. Lett. France 41, L95 (1980)

  2. A.A. Abrikosov, J. Low Temp. Phys. 53, 359 (1983)

    Google Scholar 

  3. C. Bourbonnais, L.G. Caron, Europhys. Lett. 5, 209 (1988)

    Google Scholar 

  4. L.P. Gorkov, D. Jérome, J. Phys. Lett. France 46, L643 (1985)

  5. I.J. Lee, M.J. Naughton, G.M. Danner, P.M. Chaikin, Phys. Rev. Lett. 78, 3555 (1997)

    Article  Google Scholar 

  6. I.J. Lee, S.E. Brown, W.G. Clark, M.J. Strouse, M.J. Naughton, W. Kang, P.M. Chaikin, Phys. Rev. Lett. 88, 017004-1 (2002)

    Article  Google Scholar 

  7. I.J. Lee, P.M. Chaikin, M.J. Naughton, Phys. Rev. Lett. 88, 207002 (2002)

    Article  Google Scholar 

  8. T. Vuletić, P. Auban-Senzier, C. Pasquier, S. Tomić, D. Jérome, M. Héritier, K. Bechgaard, Eur. Phys. J. B 25, 319 (2002)

    Article  Google Scholar 

  9. K. Bechgaard, K. Carneiro, M. Olsen, F.B. Rasmussen, C.S. Jacobsen, Phys. Rev. Lett. 46, 852 (1981)

    Article  Google Scholar 

  10. M. Takigawa, H. Yasuoka, G. Saito, J. Phys. Soc. Jpn 56, 873 (1987)

    Google Scholar 

  11. Y. Hasegawa, H. Fukuyama, J. Phys. Soc. Jpn 56, 877 (1987)

    Google Scholar 

  12. S. Belin, K. Behnia, Phys. Rev. Lett. 79, 2125 (1997)

    Article  Google Scholar 

  13. H. Mayaffre, P. Wzietek, D. Jérome, S. Brazovskii, Phys. Rev. Lett. 75, 4122 (1995)

    Article  Google Scholar 

  14. S.M. de Soto, C.P. Slichter, A.M. Kini, H.H. Wang, U. Geiser, J.M. Williams, Phys. Rev. B 52, 10364 (1995)

    Article  Google Scholar 

  15. K. Kanoda, K. Miyagawa, A. Kawamoto, Y. Nakazawa, Phys. Rev. B 54, 76 (1996)

    Article  Google Scholar 

  16. H. Elsinger, J. Wosnitza, S. Wanka, J. Hagel, D. Schweitzer, W. Strunz, Phys. Rev. Lett. 84, 6098 (2000)

    Article  Google Scholar 

  17. J. Müller, M. Lang, R. Helfrich, F. Steglich, T. Sasaki, Phys. Rev. B 65, 140509 (2002)

    Article  Google Scholar 

  18. S. Belin, K. Behnia, A. Deluzet, Phys. Rev. Lett. 81, 4728 (1998)

    Article  Google Scholar 

  19. M. Pinterić, S. Tomić, M. Prester, D. Drobać, O. Milat, K. Maki, D. Schweitzer, I. Heinen, W. Strunz, Phys. Rev. B 61, 7033 (2000)

    Article  Google Scholar 

  20. M. Pinterić, S. Tomić, M. Prester, D. Drobać, K. Maki, Phys. Rev. B 66, 174521 (2002)

    Article  Google Scholar 

  21. B.J. Powell, R.H. McKenzie, Phys. Rev. B 69, 024519 (2004)

    Article  Google Scholar 

  22. P.W. Anderson, J. Phys. Chem. Solids 11, 26 (1959)

    Article  Google Scholar 

  23. A.P. Mackenzie, R.K.W. Haselwimmer, A.W. Tyler, G.G. Lonzarich, Y. Mori, S. Nishizaki, Y. Maeno, Phys. Rev. Lett. 80, 161 (1998)

    Article  Google Scholar 

  24. S. Bouffard, M. Ribault, R. Brusetti, D. Jérome, K. Bechgaard, J. Phys. C 15, 2951 (1982)

    Article  Google Scholar 

  25. M.Y. Choi, P.M. Chaikin, S.Z. Huang, P. Haen, E.M. Engler, R.L. Greene, Phys. Rev. B 25, 6202 (1982)

    Article  Google Scholar 

  26. L. Zuppirolli, in Low Dimensional Conductors and Superconductors, edited by D. Jérome, L.G. Caron (Plenum Press, New-York, 1987), p. 307

  27. M. Sanquer, S. Bouffard, Mol. Cryst. Liq. Cryst. 119, 147 (1985)

    Google Scholar 

  28. C. Coulon, P. Delhaes, J. Amiell, J.P. Monceau, J.M. Fabre, L. Giral, J. Phys. France 43, 1721 (1982)

    Google Scholar 

  29. I. Johannsen, K. Bechgaard, C.S. Jacobsen, G. Rindorf, N. Thorup, K. Mortensen, D. Mailly, Mol. Cryst. Liq. Cryst. 119, 277 (1985)

    Google Scholar 

  30. K. Mortensen, E.M. Engler, Phys. Rev. B 29, 842 (1984)

    Article  Google Scholar 

  31. J.P. Pouget, in Low Dimensional Conductors and Superconductors, edited by D. Jérome, L.G. Caron (Plenum Press, New-York, 1987), p. 17

  32. S. Tomić, D. Jérome, P. Monod, K. Bechgaard, J. Phys. Colloq. France 44, C3-1083 (1983)

    Google Scholar 

  33. P. Garoche, R. Brusetti, K. Bechgaard, Phys. Rev. Lett. 49, 1346 (1982)

    Article  Google Scholar 

  34. S. Tomić, Ph.D. thesis, Université Paris Sud, Orsay, 1986

  35. O. Traetteberg. Ph.D. thesis, University Paris-Sud, 1993

  36. S. Tomić, D. Jérome, D. Mailly, M. Ribault, K. Bechgaard, J. Phys. Colloq. France 44, C3-1075 (1983)

    Google Scholar 

  37. S. Ravy, R. Moret, J.P. Pouget, R. Comes, Physica B 143, 542 (1986)

    Article  Google Scholar 

  38. A long exposure time or a high current needed for achieving a good sensitivity resulted in the sample sublimation

  39. We have checked that the inelastic scattering contribution behaving like T 2 in the temperature domain 10 K-20 K is not affected by the modification of the impurity scattering

  40. V. Ilakovac, S. Ravy, K. Boubekeur, C. Lenoir, P. Batail, J.P. Pouget, Phys. Rev. B 56, 13878 (1997)

    Article  Google Scholar 

  41. The phase diagram of the R-state of \({\rm (TMTSF)_{2}(ClO}_{4})_{(1-x)}{\rm (ReO_{4})}_{x}\) reported in reference [36] showing a slight decrease of \(T_{\rm AO}\) upon alloying has been obtained with a cooling rate five times faster than our smallest cooling rate

  42. F. Beuneu, P. Monod, Phys. Rev. B 18, 2422 (1978)

    Article  Google Scholar 

  43. P.G. de Gennes, Superconductivity of Metals and Alloys (Addison-Wesley Publishing Company, 1989)

  44. The determination of the critical temperature in zero field from the extrapolation of the critical field could have been performed using any field orientation. The c * orientation has been chosen because it is the axis along which it is easier to orient the magnetic field

  45. B. Korin-Hamzić, L. Forró, J.R. Cooper, K. Bechgaard, Phys. Rev. B 38, 11177 (1988)

    Article  Google Scholar 

  46. M. Weger, J. Phys. Colloq. France 39, C6-1456 (1978)

    Google Scholar 

  47. J. Friedel, D. Jérome, Contemp. Phys. 23, 583 (1982)

    Google Scholar 

  48. J. Moser, M. Gabay, P. Auban-Senzier, D. Jérome, K. Bechgaard, J.M. Fabre, Eur. Phys. J. B 1, 39 (1998)

    Article  Google Scholar 

  49. A. Georges, T. Giamarchi, N. Sandler, Phys. Rev. B 61, 16393 (2000)

    Article  Google Scholar 

  50. P. Moses, R. McKenzie, Phys. Rev. B 60, 7998 (1999)

    Article  Google Scholar 

  51. J.R. Ferraro, J.M. Williams, in Introduction to Synthetic Electrical Conductors (Academic Press, London, 1987)

  52. K. Maki, H. Won, S. Haas, Phys. Rev. B 69, 012502 (2004)

    Article  Google Scholar 

  53. A.I. Larkin, JETP Lett. 2, 130 (1965)

    Google Scholar 

  54. C.S. Jacobsen, D.B. Tanner, K. Bechgaard, J. Phys. Colloq. France 44, 859 (1983)

    Google Scholar 

  55. H.K. Ng, T. Timusk, K. Bechgaard, Mol. Cryst. Liq. Cryst. 119, 191 (1985)

    Google Scholar 

  56. T. Timusk. in Low Dimensional Conductors and Superconductors, edited by D. Jérome, L.G. Caron (Plenum Press, New-York, 1987), p. 275

  57. K. Murata, M. Tokumoto, H. Anzai, K. Kajimura, T. Ishiguro, Japanese J. Appl. Phys. Suppl. 26-3, 1367 (1987)

    Google Scholar 

  58. F. Pesty, K. Wang, P. Garoche, Synthetic. Metals. 27, 137 (1988)

    Article  Google Scholar 

  59. A. Schwartz, M. Dressel, G. Grűner, V. Vescoli, L. Degiorgi, T. Giamarchi, Phys. Rev. B 58, 1261 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Jérome.

Additional information

Received: 17 June 2004, Published online: 3 August 2004

PACS:

74.70.Kn Organic superconductors - 74.62.Dh Effects of crystal defects, doping and substitution - 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons, resonating valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid, etc.)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joo, N., Auban-Senzier, P., Pasquier, C.R. et al. Suppression of superconductivity by non-magnetic disorder in the organic superconductor \(\mathsf{(TMTSF)_{2}(ClO_{4})_{(1-x)}(ReO_{4})_{x}}\) . Eur. Phys. J. B 40, 43–48 (2004). https://doi.org/10.1140/epjb/e2004-00236-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00236-4

Keywords

Navigation