Skip to main content
Log in

Investigating the rp-process with the Canadian Penning trap mass spectrometer

  • ENAM 2004
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

The Canadian Penning trap (CPT) mass spectrometer at the Argonne National Laboratory makes precise mass measurements of nuclides with short half-lives. Since the previous ENAM conference, many significant modifications to the apparatus were implemented to improve both the precision and efficiency of measurement, and now more than 60 radioactive isotopes have been measured with half-lives as short as one second and with a precision ( Δm/m) approaching 10-8. The CPT mass measurement program has concentrated so far on nuclides of importance to astrophysics. In particular, measurements have been obtained of isotopes along the rp-process path, in which energy is released from a series of rapid proton-capture reactions. An X-ray burst is one possible site for the rp-process mechanism which involves the accretion of hydrogen and helium from one star onto the surface of its neutron star binary companion. Mass measurements are required as key inputs to network calculations used to describe the rp-process in terms of the abundances of the nuclides produced, the light-curve profile of the X-ray bursts, and the energy produced. This paper will present the precise mass measurements made along the rp-process path with particular emphasis on the “waiting-point” nuclides 68Se and 64Ge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Clark, in Exotic Nuclei and Atomic Masses (ENAM2001), Hämeenlinna, Finland, 2001, edited by J. Äystö, P. Dendooven, A. Jokinen, M. Leino (Springer, Berlin, 2003) p. 39.

  2. J.A. Clark, Phys. Rev. Lett. 92, 192501 (2004).

    Article  PubMed  Google Scholar 

  3. G. Savard, Phys. Rev. C 70, 042501 (2004).

    Article  Google Scholar 

  4. J.A. Clark, in The r-Process: The Astrophysical Origin of the Heavy Elements and Related Rare Isotope Accelerator Physics, Seattle, Washington, 2004, edited by Y.-Z. Qian, E. Rehm, H. Schatz, F.-K. Thielemann (World Scientific, Singapore, 2004) p. 11.

  5. K.S. Sharma, these proceedings.

  6. R.K. Wallace, S.E. Woosley, Astrophys. J. Suppl. Ser. 45, 389 (1981).

    Article  Google Scholar 

  7. H. Schatz, Phys. Rep. 294, 167 (1998).

    Article  Google Scholar 

  8. M. Wiescher, J. Phys. G 25, R133 (1999).

  9. T. Strohmayer, L. Bildsten, in Compact Stellar X-Ray Sources, edited by W.H.G. Lewin, M. van der Klis (Cambridge University Press, Cambridge) in press.

  10. G. Savard, Nucl. Phys. A 626, 353 (1997).

    Article  Google Scholar 

  11. J. Clark, Nucl. Instrum. Methods Phys. Res. B 204, 487 (2003).

    Article  Google Scholar 

  12. G. Savard, Nucl. Instrum. Methods Phys. Res. B 204, 582 (2003).

    Article  Google Scholar 

  13. C. Boudreau, Master’s thesis, McGill University, 2001.

  14. G. Savard, Phys. Lett. A 158, 247 (1991).

    Article  Google Scholar 

  15. L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986).

    Google Scholar 

  16. G. Bollen, J. Appl. Phys. 68, 4355 (1990).

    Article  Google Scholar 

  17. M. König, Int. J. Mass Spectrom. Ion Processes 142, 95 (1995).

    Article  Google Scholar 

  18. G. Bollen, Nucl. Phys. A 693, 3 (2001).

    Article  Google Scholar 

  19. G. Gräff, Z. Phys. A 297, 35 (1980).

    Article  Google Scholar 

  20. G.F. Lima, Phys. Rev. C 65, 044618 (2002).

    Article  Google Scholar 

  21. M. Chartier, private communication.

  22. A. Wöhr, Nucl. Phys. A 742, 349 (2004).

    Article  Google Scholar 

  23. G. Audi, Nucl. Phys. A 729, 337 (2003).

    Article  Google Scholar 

  24. B.A. Brown, Phys. Rev. C 65, 045802 (2002).

    Article  Google Scholar 

  25. R. Pfaff, Phys. Rev. C 53, 1753 (1996).

    Article  Google Scholar 

  26. J.A. Clark, in preparation.

  27. H. Schatz, Phys. Rev. Lett. 86, 3471 (2001).

    Article  PubMed  Google Scholar 

  28. D.D. Clayton, F. Hoyle, Astrophys. J. 187, L101 (1974).

  29. J. Jos\’ e, Astrophys. J. 520, 347 (1999).

    Article  Google Scholar 

  30. J.C. Hardy, Phys. Rev. C 9, 252 (1974).

    Article  Google Scholar 

  31. J.A. Nolen, Nucl. Instrum. Methods 115, 189 (1974).

    Article  Google Scholar 

  32. S. Bishop, Phys. Rev. Lett. 90, 162501 (2003).

    Article  PubMed  Google Scholar 

  33. G. Audi, A.H. Wapstra, Nucl. Phys. A 595, 409 (1995).

    Article  Google Scholar 

  34. J.C. Hardy, Phys. Rev. Lett. 91, 082501 (2003).

    Article  PubMed  Google Scholar 

  35. M. Mukherjee, Phys. Rev. Lett. 93, 150801 (2004).

    Article  PubMed  Google Scholar 

  36. D. Seweryniak, Phys. Rev. Lett. 94, 032501 (2005).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Clark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, J.A., Barber, R.C., Blank, B. et al. Investigating the rp-process with the Canadian Penning trap mass spectrometer. Eur. Phys. J. A 25 (Suppl 1), 629–632 (2005). https://doi.org/10.1140/epjad/i2005-06-172-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjad/i2005-06-172-3

PACS.

Navigation