Skip to main content
Log in

Variational calculations of symmetric nuclear matter and pure neutron matter with the tensor-optimized Fermi Sphere (TOFS) method: many-body effects and short-range correlation

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The equations of state for symmetric nuclear matter and pure neutron matter are investigated with the tensor-optimized Fermi Sphere method (TOFS) up to the density \(\varvec{\rho =0.5}\) fm\(^{-3}\). This method is based on a linked-cluster expansion theorem, and the energy per particle of nuclear matter (\(\varvec{E/A}\)) is calculated variationally with respect to the correlated nuclear matter wave function. We can study the density dependence of the many-body terms arising from the operator products, which contribute to \(\varvec{E/A}\). In order to clarify the relation between the many-body effects and short-range correlation, we take the spin-isospin dependent central NN interaction with a few GeV repulsion in the inner region. The EOS obtained by the TOFS method is reasonably reproduced, compared with other ab initio many-body methods. We found that the many-body terms (from the 2-body to 6-body ones) give sizable effects on E/A at higher density, and they play an important role in nuclear matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has associated code/software in a data repository. [Authors’ comment: The relevant data are given in the figures. They can also be obtained from the author.]

References

  1. J.M. Lattimer, M. Prakash, Phys. Rep. 333–334, 121 (2000)

    Article  ADS  Google Scholar 

  2. G. Röpke, A. Schnell, P. Schuck, P. Noziéres, Phys. Rev. Lett. 80, 3177 (1998)

    Article  ADS  Google Scholar 

  3. P. Schuck, Y. Funaki, H. Horiuchi, G. Röpke, A. Tohsaki, T. Yamada, Phys. Scr. 91, 123001 (2016)

    Article  ADS  Google Scholar 

  4. I. Bombaci, A. Fabrocini, A. Polls, I. Vidaña, Phys. Lett. B 609, 232 (2005)

    Article  ADS  Google Scholar 

  5. H.Q. Song, M. Baldo, G. Giansiracusa, U. Lombardo, Phys. Rev. Lett. 81, 1584 (1998)

    Article  ADS  Google Scholar 

  6. M. Baldo, A. Polls, A. Rios, H.J. Schulze, I. Vidaña, Phys. Rev. C 86, 064001 (2012)

    Article  ADS  Google Scholar 

  7. M. Baldo, A. Fiasconaro, H.Q. Song, G. Giansiracusa, U. Lombardo, Phys. Rev. C 65, 017303 (2001)

    Article  ADS  Google Scholar 

  8. V.R. Pandharipande, R.B. Wiringa, Rev. Mod. Phys. 51, 821 (1979)

    Article  ADS  Google Scholar 

  9. S. Fantoni, A. Fabrocini, Microscopic Quantum Many Body Theories and Their Applications: Correlated basis function theory for fermion systems, in J. Navarro, A. Polls (eds.), Lecture Notes in Physics, vol. 510, (Springer, Berlin, 1998), pp. 119–186

  10. A. Lovato, O. Benhar, S. Fantoni, A.Y. Illarionov, K.E. Schmidt, Phys. Rev. C 83, 054003 (2011)

    Article  ADS  Google Scholar 

  11. A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998)

    Article  ADS  Google Scholar 

  12. W.H. Dickhoff, C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004)

    Article  ADS  Google Scholar 

  13. V. Somà, P. Bozėk, Phys. Rev. C 74, 045809 (2006)

    Article  ADS  Google Scholar 

  14. A. Rios, A. Polls, I. Vidaña, Phys. Rev. C 79, 025802 (2009)

    Article  ADS  Google Scholar 

  15. K.E. Schmidt, S. Fantoni, Phys. Lett. B 446, 99 (1999)

    Article  ADS  Google Scholar 

  16. A. Sarsa, S. Fantoni, K.E. Schmidt, F. Pederiva, Phys. Rev. C 68, 024308 (2003)

    Article  ADS  Google Scholar 

  17. S. Gandolfi, J. Carlson, S. Reddy, A.W. Steiner, R.B. Wiringa, Eur. Phys. J. A 50, 10 (2014)

    Article  ADS  Google Scholar 

  18. G. Baardsen, A. Ekström, G. Hagen, M. Hjorth-Jensen, Phys. Rev. C 88, 054312 (2013)

    Article  ADS  Google Scholar 

  19. G. Hagen, T. Papenbrock, A. Ekström, K.A. Wendt, G. Baardsen, S. Gandolfi, M. Hjorth-Jensen, C.J. Horowitz, Phys. Rev. C 89, 014319 (2014)

    Article  ADS  Google Scholar 

  20. J. Lietz, S. Novario, G.R. Jansen, G. Hagen, M. Hjorth-Jensen, An Advanced Course in Computational NuclearPhysics: Bridging the Scales from Quarks to Neutron Stars, in M. Hjorth-Jensen, M. P. Lombardo, U. van Kolck (eds.), Lecture Notes in Physics, vol. 936, (Springer, Berlin, 2017), pp. 293–399

  21. G.H. Bordbar, M. Modarres, J. Phys. G Nucl. Part. Phys. 23, 163 (1997)

    Article  Google Scholar 

  22. G.H. Bordbar, M. Modarres, Phys. Rev. C 57, 714 (1998)

    Article  ADS  Google Scholar 

  23. M. Modarres, A. Tafrihi, Prog. Part. Nucl. Phys. 131, 104047 (2023)

    Article  Google Scholar 

  24. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995)

    Article  ADS  Google Scholar 

  25. M. Piarulli, I. Bombaci, D. Logoteta, A. Lovato, R.B. Wiringa, Phys. Rev. C 101, 045801 (2020)

    Article  ADS  Google Scholar 

  26. A. Lovato, I. Bombaci, D. Logoteta, M. Piarulli, R.B. Wiringa, Phys. Rev. C 105, 055808 (2022)

    Article  ADS  Google Scholar 

  27. E. Hiyama, Y. Kino, M. Kamumura, Prog. Part. Nucl. Phys. 51, 223 (2003)

    Article  ADS  Google Scholar 

  28. Y. Funaki, T. Yamada, H. Horiuchi, G. Röpke, P. Schuck, A. Tohsaki, Phys. Rev. Lett. 101, 082502 (2008)

    Article  ADS  Google Scholar 

  29. T. Yamada, Ann. Phys. 403, 1 (2019)

    Article  ADS  Google Scholar 

  30. T. Yamada, T. Myo, H. Toki, H. Horiuchi, K. Ikeda, Prog. Theor. Exp. Phys. 2019, 113D03 (2019)

    Article  Google Scholar 

  31. T. Yamada, Eur. Phys. J. A 57, 73 (2021)

    Article  ADS  Google Scholar 

  32. T. Myo, H. Toki, K. Ikeda, H. Horiuchi, T. Suhara, Prog. Theor. Exp. Phys. 2015, 073D02 (2015)

    Article  Google Scholar 

  33. T. Myo, H. Toki, K. Ikeda, H. Horiuchi, T. Suhara, Phys. Lett. B 769, 213 (2017)

    Article  ADS  Google Scholar 

  34. H. Kümmel, H.K. Lührmann, J.G. Zabolitzky, Phys. Rep. 36, 1 (1978)

    Article  ADS  Google Scholar 

  35. R. Barlett, Ann. Rev. Phys. Chem. 32, 359 (1981)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the JSPS KAKENHI Grant numbers JP26400283, JP23K03397.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiichi Yamada.

Additional information

Communicated by David Blaschke.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, T. Variational calculations of symmetric nuclear matter and pure neutron matter with the tensor-optimized Fermi Sphere (TOFS) method: many-body effects and short-range correlation. Eur. Phys. J. A 60, 57 (2024). https://doi.org/10.1140/epja/s10050-024-01267-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01267-w

Navigation