Skip to main content
Log in

Studies of nuclear equation of state with the HIRFL-CSR external-target experiment

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The Heavy Ion Research Facility in Lanzhou-Cooling Storage Ring (HIRFL-CSR) external-target experiment (CEE) under construction is expected to provide novel opportunities for the studies of the thermodynamic properties of nuclear matter, in particular the nuclear matter equation of state (nEOS), with heavy ion collisions at a few hundreds MeV/u beam energies. Based on Geant 4 packages, the simulations of the detector responses to the collision events generated using transport model are conducted. The overall performance of CEE, including the geometric coverage, the momentum resolution of tracks and the particle identification ability has been investigated. Various observables proposed to probe the nEOS, such as the production of light clusters, \({}^3\textrm{H}/^3\textrm{He}\) yield ratio, radial flow, \(\pi ^{-}/\pi ^{+}\) yield ratio and neutral kaon yields, have been reconstructed. The feasibility of studying nEOS beyond the saturation density via the aforementioned observables to be measured with CEE has been demonstrated by using the ultra relativistic quantum molecular dynamics (UrQMD) simulation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. I. Arsene et al., Quark gluon plasma and color glass condensate at rhic? The perspective from the Brahms experiment. Nucl. Phys. A 757(1), 1–27 (2005)

    ADS  Google Scholar 

  2. B.B. Back et al., The phobos perspective on discoveries at rhic. Nucl. Phys. A 757(1), 28–101 (2005)

    ADS  Google Scholar 

  3. J. Adams et al., Experimental and theoretical challenges in the search for the quark-gluon plasma: The star collaboration’s critical assessment of the evidence from rhic collisions (2005)

  4. K. Adcox et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at rhic: experimental evaluation by the phenix collaboration. Nucl. Phys. A 757(1–2 SPEC ISS), 184–283 (2005)

  5. P. Braun-Munzinger et al., The quest for the quark-gluon plasma. Nature 448(7151), 302–309 (2007)

    ADS  CAS  PubMed  Google Scholar 

  6. X.F. Luo et al., Search for the qcd critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at rhic: an overview. Nucl. Sci. Tech. 28(8), 40 (2017)

    ADS  Google Scholar 

  7. B.A. Li et al. Topical issue on nuclear symmetry energy. Eur. Phys. J. A. Hadrons Nucl 50(2) (2014)

  8. H.H. Gutbrod et al., Squeeze-out of nuclear matter as a function of projectile energy and mass. Phys. Rev. C 42, 640–651 (1990)

    ADS  CAS  Google Scholar 

  9. W. Reisdorf et al., Systematics of azimuthal asymmetries in heavy ion collisions in the 1a gev regime. Nucl. Phys. A 876, 1–60 (2012)

    ADS  CAS  Google Scholar 

  10. P. Danielewicz et al., Determination of the equation of state of dense matter. Science 298(5598), 1592–1596 (2002)

    ADS  CAS  PubMed  Google Scholar 

  11. Y.J. Wang et al., Application of microscopic transport model in the study of nuclear equation of state from heavy ion collisions at intermediate energies. Front. Phys. 15, 44302 (2020)

    ADS  Google Scholar 

  12. P. Hillmann et al., Directed, elliptic and triangular flow of protons in au+au reactions at 1.23 a gev: a theoretical analysis of the recent hades data. J. Phys. G Nucl. Part. Phys. 45(8), 085101 (2018)

  13. J. Aichelin et al., Subthreshold kaon production as a probe of the nuclear equation of state. Phys. Rev. Lett. 55, 2661–2663 (1985)

    ADS  CAS  PubMed  Google Scholar 

  14. C. Fuchs et al., Probing the nuclear equation of state by \({{k}}^{+}\) production in heavy-ion collisions. Phys. Rev. Lett. 86, 1974–1977 (2001)

    ADS  CAS  PubMed  Google Scholar 

  15. C. Sturm et al., Evidence for a soft nuclear equation-of-state from kaon production in heavy-ion collisions. Phys. Rev. Lett. 86, 39–42 (2001)

    ADS  CAS  PubMed  Google Scholar 

  16. Ch. Hartnack et al., Hadronic matter is soft. Phys. Rev. Lett. 96, 012302 (2006)

    ADS  PubMed  Google Scholar 

  17. A. Sorensen et al., Dense nuclear matter equation of state from heavy-ion collisions. white paper for 2023 LPR (2023). arXiv:2301.13253

  18. B.A. Li et al., Equation of state of asymmetric nuclear matter and collisions of neutron-rich nuclei. Phys. Rev. Lett. 78, 1644–1647 (1997)

    ADS  CAS  Google Scholar 

  19. H.S. Xu et al., Isospin fractionation in nuclear multifragmentation. Phys. Rev. Lett. 85, 716–719 (2000)

    ADS  CAS  PubMed  Google Scholar 

  20. W.P. Tan et al., Fragment isotope distributions and the isospin dependent equation of state. Phys. Rev. C 64, 051901 (2001)

    ADS  Google Scholar 

  21. M.B. Tsang et al., Isotopic scaling in nuclear reactions. Phys. Rev. Lett. 86, 5023–5026 (2001)

    ADS  CAS  PubMed  Google Scholar 

  22. B.A. Li et al., Proton differential elliptic flow and the isospin dependence of the nuclear equation of state. Phys. Rev. C 64, 054604 (2001)

    ADS  Google Scholar 

  23. B.A. Li, Neutron-proton differential flow as a probe of isospin-dependence of the nuclear equation of state. Phys. Rev. Lett. 85, 4221–4224 (2000)

    ADS  CAS  PubMed  Google Scholar 

  24. Z.G. Xiao et al., Probing nuclear symmetry energy at high densities using pion, kaon, eta and photon productions in heavy-ion collisions. Eur. Phys. J. A 50, 37 (2014)

    ADS  Google Scholar 

  25. B.A. Li, Isospin dependence of the \({\pi }^{-}/{\pi }^{+}\) ratio and density dependence of the nuclear symmetry energy. Phys. Rev. C 67, 017601 (2003)

    ADS  Google Scholar 

  26. D. Adhikari et al., Accurate determination of the neutron skin thickness of \(^{208}\rm Pb \) through parity-violation in electron scattering. Phys. Rev. Lett. 126, 172502 (2021)

    ADS  CAS  PubMed  Google Scholar 

  27. T.R. Brendan et al., Implications of prex-2 on the equation of state of neutron-rich matter. Phys. Rev. Lett. 126, 172503 (2021)

    Google Scholar 

  28. Y. Zhang et al., Long-time drift of the isospin degree of freedom in heavy ion collisions. Phys. Rev. C 95, 041602 (2017)

    ADS  Google Scholar 

  29. Y.J. Wang et al., Observing the ping-pong modality of the isospin degree of freedom in cluster emission from heavy-ion reactions. Phys. Rev. C 107, L041601 (2023)

    ADS  CAS  Google Scholar 

  30. J. Estee et al., Probing the symmetry energy with the spectral pion ratio. Phys. Rev. Lett. 126, 162701 (2021)

    ADS  CAS  PubMed  Google Scholar 

  31. Y. Zhou et al., Equation of state of dense matter in the multimessenger era. Phys. Rev. D 99, 121301 (2019)

    ADS  CAS  Google Scholar 

  32. N.B. Zhang et al., Constraints on the muon fraction and density profile in neutron stars. Astrophys. J. 893(1), 61 (2020)

    ADS  CAS  Google Scholar 

  33. Y.Y. Liu et al., Insights into the pion production mechanism and the symmetry energy at high density. Phys. Rev. C 103, 014616 (2021)

    ADS  CAS  Google Scholar 

  34. S. Huth et al., Constraining neutron-star matter with microscopic and macroscopic collisions. Nature 606, 276–280 (2022)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. C. Y. Tsang, M. Y. Betty Tsang, W. G. Lynch, R. Kumar, C. J. Horowitz, Determination of the equation of state from nuclear experiments and neutron star observations (2023)

  36. W. Reisdorf et al., Systematics of pion emission in heavy ion collisions in the 1a gev regime. Nucl. Phys. A 781(3), 459–508 (2007)

    ADS  Google Scholar 

  37. Z.G. Xiao et al., Circumstantial evidence for a soft nuclear symmetry energy at suprasaturation densities. Phys. Rev. Lett. 102, 062502 (2009)

    ADS  PubMed  Google Scholar 

  38. W.J. Xie et al., Symmetry energy and pion production in the Boltzmann-Langevin approach. Phys. Lett. B 718(4), 1510–1514 (2013)

    ADS  CAS  Google Scholar 

  39. P. Russotto et al., Symmetry energy from elliptic flow in 197au+197au. Phys. Lett. B 697(5), 471–476 (2011)

    ADS  CAS  Google Scholar 

  40. X.F Luo et al. Properties of QCD Matter at High Baryon Density. Springer, Singapore (Science Press Beijing) (2022) (ISBN:978-981-19-4440-6)

  41. L.M. Lyu et al., Conceptual design of the hirfl-csr external-target experiment. Sci. China Phys. Mech. Astron. 60, 012021 (2016)

    ADS  Google Scholar 

  42. Y.J. Yuan et al., Present status of hirfl complex in lanzhou. J. Phys. Conf. Ser. 1401(1), 012003 (2020)

    CAS  Google Scholar 

  43. Z.Y. Sun et al., Huizhou accelerator complex facility and its future development. Sci. Sinica Phys. Mech. Astron. 50, 112006 (2020)

    ADS  Google Scholar 

  44. Q.F. Li et al., Nonequilibrium dynamics in heavy-ion collisions at low energies available at the gsi schwerionen synchrotron. Phys. Rev. C 83, 044617 (2011)

    ADS  Google Scholar 

  45. Y.J. Wang et al., Study of the nuclear symmetry energy from the rapidity-dependent elliptic flow in heavy-ion collisions around 1 GeV/nucleon regime. Phys. Lett. B 802, 135249 (2020)

    CAS  Google Scholar 

  46. Y.J. Wang et al., Application of microscopic transport model in the study of nuclear equation of state from heavy ion collisions at intermediate energies. Front. Phys. 15, 44302 (2020)

    ADS  Google Scholar 

  47. https://fairroot.gsi.de

  48. Li. He et al., Simulation of momentum resolution of the cee-tpc in hirfl. Nucl. Tech. 39, 070401 (2016)

  49. X. Wang et al., Cee inner tof prototype design and preliminary test results. J. Instrument. 17(09), P09023 (2022)

    Google Scholar 

  50. B. Wang et al., The cee-etof wall constructed with new sealed mrpc. J. Instrument. 15(08), C08022 (2020)

    CAS  Google Scholar 

  51. S.H. Zhu et al., Prototype design of readout electronics for zero degree calorimeter in the hirfl-csr external-target experiment. J. Instrum. 16(08), P08014 (2021)

    CAS  Google Scholar 

  52. D. Hu et al., A t0/trigger detector for the external target experiment at csr. J. Instrum. 12(06), C06010 (2017)

    Google Scholar 

  53. D.D. Hu et al., Extensive beam test study of prototype mrpcs for the t0 detector at the csr external-target experiment. Eur. Phys. J. C 80, 282 (2020)

    ADS  CAS  Google Scholar 

  54. H.L. Wang et al., Design and tests of the prototype beam monitor of the csr external target experiment. Nucl. Sci. Tech. 33, 36 (2022)

    CAS  Google Scholar 

  55. J. Liu et al., Design and preliminary characterization of a novel silicon charge sensor for the gaseous beam monitor at the csr external-target experiment. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 1047, 167786 (2023)

  56. J. Adolfsson et al., Sampa chip: the new 32 channels asic for the alice tpc and mch upgrades. J. Instrum. 12(04), C04008 (2017)

    Google Scholar 

  57. J. Y. Yuan et al., Development of multichannel readout electronics prototype system for tpc detector of csr external-target experiment. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 1052:168281 (2023)

  58. F. Anghinolfi et al., Nino, an ultra-fast, low-power, front-end amplifier discriminator for the time-of-flight detector in alice experiment. In 2003 IEEE Nuclear Science Symposium. In: Conference Record (IEEE Cat. No. 03CH37515) 1, 375–379 (2003)

  59. J.M. Lu et al., Readout electronics prototype of tof detectors in cee of hirfl. IEEE Trans. Nucl. Sci. 68(8), 1976–1983 (2021)

    ADS  Google Scholar 

  60. W.J. Xie et al., Bayesian inference of high-density nuclear symmetry energy from radii of canonical neutron stars. Astrophys. J. 883(2), 174 (2019)

    ADS  CAS  Google Scholar 

  61. I. Legred et al., Impact of the psr \({\rm J} 0740+6620\) radius constraint on the properties of high-density matter. Phys. Rev. D 104, 063003 (2021)

    ADS  CAS  Google Scholar 

  62. D. Oliinychenko et al., Sensitivity of \({\rm Au} + {\rm Au}\) collisions to the symmetric nuclear matter equation of state at 2–5 nuclear saturation densities. Phys. Rev. C 108, 034908 (2023)

    ADS  CAS  Google Scholar 

  63. P. Morfouace et al., Constraining the symmetry energy with heavy-ion collisions and bayesian analyses. Phys. Lett. B 799, 135045 (2019)

    CAS  Google Scholar 

  64. J. Xu et al., Constraining isovector nuclear interactions with giant resonances within a bayesian approach. Phys. Lett. B 810, 135820 (2020)

    CAS  Google Scholar 

  65. M.O. Kuttan et al., The qcd eos of dense nuclear matter from bayesian analysis of heavy ion collision data (2022)

  66. S.A. Bass et al., Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part. Nucl. Phys. 41, 255–369 (1998)

    ADS  CAS  Google Scholar 

  67. M. Bleicher et al., Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model. J. Phys. G Nucl. Part. Phys. 25(9), 1859 (1999)

    ADS  CAS  Google Scholar 

  68. Y.J. Wang et al., Collective flows of light particles in the Au+Au collisions at intermediate energies. Phys. Rev. C 89(3), 034606 (2014)

    ADS  Google Scholar 

  69. Y.J. Wang et al., Constraining the high-density nuclear symmetry energy with the transverse-momentum dependent elliptic flow. Phys. Rev. C 89(4), 044603 (2014)

    ADS  Google Scholar 

  70. Q.F. Li et al., Medium modifications of the nucleon-nucleon elastic cross section in neutron-rich intermediate energy HICs. J. Phys. G 32, 407–416 (2006)

    ADS  Google Scholar 

  71. Pengcheng Li, Yongjia Wang, Qingfeng Li, Chenchen Guo, Hongfei Zhang, Effects of the in-medium nucleon-nucleon cross section on collective flow and nuclear stopping in heavy-ion collisions in the Fermi-energy domain. Phys. Rev. C 97(4), 044620 (2018)

    ADS  CAS  Google Scholar 

  72. P.C. Li et al., Accessing the in-medium effects on nucleon-nucleon elastic cross section with collective flows and nuclear stopping. Phys. Lett. B 828, 137019 (2022)

    CAS  Google Scholar 

  73. Y. Zhang, Z. Li, C. Zhou, M.B. Tsang, Effect of isospin dependent cluster recognition on the observables in heavy ion collisions. Phys. Rev. C 85, 051602 (2012)

    ADS  Google Scholar 

  74. Y.S. Du et al., The effect of Lorentz-like force on collective flows of K\(^{+}\) in Au+Au collisions at 1.5 GeV/nucleon. Sci. China Phys. Mech. Astron. 61(6), 062011 (2018)

  75. Y.Y. Liu et al., Collective flows of pions in Au+Au collisions at energies 1.0 and 1.5 GeV/nucleon. Phys. Rev. C 97(3), 034602 (2018)

  76. Y.Y. Liu et al., Insights into the pion production mechanism and the symmetry energy at high density. Phys. Rev. C 103(1), 014616 (2021)

    ADS  CAS  Google Scholar 

  77. Y.X. Zhang et al., Progress of quantum molecular dynamics model and its applications in heavy ion collisions. Front. Phys. 15, 54301 (2020)

    ADS  Google Scholar 

  78. W. Klempt, Review of particle identification by time of flight techniques. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectrom. Detect. Assoc. Equip. 433(1), 542–553 (1999)

  79. Y. Kim. Study of nuclear stopping in isospin-asymmetric nuclear collisions at 0.4 and 1.5 GeV. Dr., Seoul, Korea, Univ., Seoul, p.2004 (Univ., Diss, Korea, 2004)

  80. T. Kobayashi et al. Samurai spectrometer for ri beam experiments. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 317:294–304, 2013. XVIth International Conference on ElectroMagnetic Isotope Separators and Techniques Related to their Applications, December 2-7, 2012 at Matsue, Japan

  81. D. Guo et al., An fpga-based trigger system for cshine. Nucl. Sci. Tech. 33, 162 (2022)

    Google Scholar 

  82. M. Zhang et al., Systematic study of the \({\pi }^{-}/{\pi }^{+}\) ratio in heavy-ion collisions with the same neutron/proton ratio but different masses. Phys. Rev. C 80, 034616 (2009)

    ADS  Google Scholar 

  83. F. Fen et al., Nuclear stopping and compression in heavy-ion collisions at intermediate energies. Phys. Lett. B 666(4), 359–363 (2008)

    ADS  Google Scholar 

  84. L.W. Chen et al., Effects of symmetry energy on two-nucleon correlation functions in heavy-ion collisions induced by neutron-rich nuclei. Phys. Rev. Lett. 90, 162701 (2003)

    ADS  PubMed  Google Scholar 

  85. L.W. Chen et al., Effects of momentum-dependent nuclear potential on two-nucleon correlation functions and light cluster production in intermediate energy heavy-ion collisions. Phys. Rev. C 69, 054606 (2004)

    ADS  Google Scholar 

  86. Q.F. Li et al., Probing the density dependence of the symmetry potential at low and high densities. Phys. Rev. C 72, 034613 (2005)

    ADS  Google Scholar 

  87. Y.X. Zhang et al., Probing the density dependence of the symmetry potential with peripheral heavy-ion collisions. Phys. Rev. C 71, 024604 (2005)

    ADS  Google Scholar 

  88. Y.J. Wang et al., 3h/3he ratio as a probe of the nuclear symmetry energy at sub-saturation densities. Eur. Phys. J. A 51, 37 (2015)

    ADS  CAS  Google Scholar 

  89. C.C. Guo et al., Influence of the symmetry energy on the balance energy of the directed flow. Sci. China Phys. Mech. Astron. 55, 252–259 (2012)

    ADS  Google Scholar 

  90. K. Hagel et al., Light particle probes of expansion and temperature evolution: coalescence model analyses of heavy ion collisions at \(47a \rm MeV \). Phys. Rev. C 62, 034607 (2000)

    ADS  Google Scholar 

  91. L.W. Chen et al., Light clusters production as a probe to nuclear symmetry energy. Phys. Rev. C 68, 017601 (2003)

    ADS  Google Scholar 

  92. W. Reisdorf et al., Systematics of central heavy ion collisions in the 1a gev regime. Nucl. Phys. A 848(3), 366–427 (2010)

    ADS  Google Scholar 

  93. J.F. Dempsey et al., Isospin dependence of intermediate mass fragment production in heavy-ion collisions at e/a=55 mev. Phys. Rev. C 54, 1710–1719 (1996)

    ADS  CAS  Google Scholar 

  94. M. Veselsky et al., Isospin dependence of isobaric ratio y(3(h)/y(3he) and its relation to temperature. Phys. Lett. B 497(1), 1–7 (2001)

    ADS  CAS  Google Scholar 

  95. B.A. Li et al. Progress in constraining nuclear symmetry energy using neutron star observables since gw170817. Universe 7(6) (2021)

  96. J.Y. Ollitrault, Flow systematics from sis to sps energies. Nucl. Phys. A 638(1), 195c–206c (1998)

    ADS  Google Scholar 

  97. W. Bauer et al., Large radial flow in nucleus-nucleus collisions. Phys. Rev. C 47, R1838–R1841 (1993)

    ADS  CAS  Google Scholar 

  98. G. Poggi et al., Evidence for collective expansion in light-particle emission following au+au collisions at 100, 150 and 250 a.mev. Nucl. Phys. A, 586(4), 755–776 (1995)

  99. W. Reisdorf et al., Nuclear stopping from \(0.09a\) to \(1.93a {\rm GeV} \) and its correlation to flow. Phys. Rev. Lett. 92, 232301 (2004)

  100. G. Stoicea et al., Azimuthal dependence of collective expansion for symmetric heavy-ion collisions. Phys. Rev. Lett. 92, 072303 (2004)

    ADS  CAS  PubMed  Google Scholar 

  101. J. Stachel, Tests of thermalization in relativistic nucleus-nucleus collisions. Nucl. Phys. A 610, 509–522 (1996)

    ADS  Google Scholar 

  102. B.A. Li et al., Pion flow and antiflow in relativistic heavy-ion collisions. Phys. Rev. C 53, R22–R24 (1996)

    ADS  CAS  Google Scholar 

  103. J.Y. Ollitrault, Determination of the reaction plane in ultrarelativistic nuclear collisions. Phys. Rev. D 48, 1132–1139 (1993)

    ADS  CAS  Google Scholar 

  104. J.P. Alard et al., Midrapidity source of intermediate-mass fragments in highly central collisions of au + au at 150a mev. Phys. Rev. Lett. 69, 889–892 (1992)

    ADS  CAS  PubMed  Google Scholar 

  105. Ch. Hartnack et al., Transverse flow of nuclear matter in collisions of heavy nuclei atintermediate energies. Phys. Lett. B 506(3), 261–266 (2001)

    ADS  CAS  Google Scholar 

  106. P.J. Siemens et al., Evidence for a blast wave from compressed nuclear matter. Phys. Rev. Lett. 42, 880–883 (1979)

    ADS  CAS  Google Scholar 

  107. H.A. Gustafsson et al., Collective flow observed in relativistic nuclear collisions. Phys. Rev. Lett. 52, 1590–1593 (1984)

    ADS  CAS  Google Scholar 

  108. M.A. Lisa et al. Radial flow in \({\rm Au}+{\rm Au}\) collisions at \({E}=(0.25{-}1.15){A}{\rm GeV}\). Phys. Rev. Lett. 75, 2662–2665 (1995)

  109. S. Wang et al., In-plane retardation of collective expansion in \({\rm Au}+{\rm Au}\) collisions. Phys. Rev. Lett. 76, 3911–3914 (1996)

  110. B.A. Li et al., Near-threshold pion production with radioactive beams. Phys. Rev. C 71, 014608 (2005)

  111. B. Hong et al., Charged pion production in \({}_{44}^{96}{\rm Ru}+{}_{44}^{96}{\rm Ru} \) collisions at \(400a\) and \(1528a {\rm MeV} \). Phys. Rev. C 71, 034902 (2005)

    ADS  Google Scholar 

  112. M.D. Cozma, Neutron-proton elliptic flow difference as a probe for the high density dependence of the symmetry energy. Phys. Lett. B 700(2), 139–144 (2011)

  113. R. Stock, Particle production in high energy nucleus-nucleus collisions. Phys. Rep. 135(5), 259–315 (1986)

    ADS  MathSciNet  CAS  Google Scholar 

  114. A. Bonasera et al., Isospin effects on pion production by heavy ions. Phys. Lett. B 195(4), 521–523 (1987)

    ADS  CAS  Google Scholar 

  115. B.A. Li, Probing the high density behavior of the nuclear symmetry energy with high energy heavy-ion collisions. Phys. Rev. Lett. 88, 192701 (2002)

    ADS  PubMed  Google Scholar 

  116. Y.X. Zhang et al., Comparison of heavy-ion transport simulations: collision integral in a box. Phys. Rev. C 97, 034625 (2018)

    ADS  CAS  Google Scholar 

  117. A. Ono et al., Comparison of heavy-ion transport simulations: collision integral with pions and \({{\Delta }}\) resonances in a box. Phys. Rev. C 100, 044617 (2019)

    ADS  CAS  Google Scholar 

  118. M. Colonna et al., Comparison of heavy-ion transport simulations: mean-field dynamics in a box. Phys. Rev. C 104, 024603 (2021)

    ADS  CAS  Google Scholar 

  119. G. Ferini et al., Isospin effects on subthreshold kaon production at intermediate energies. Phys. Rev. Lett. 97, 202301 (2006)

    ADS  CAS  PubMed  Google Scholar 

  120. J. Aichelin et al., Subthreshold kaon production as a probe of the nuclear equation of state. Phys. Rev. Lett. 55, 2661–2663 (1985)

    ADS  CAS  PubMed  Google Scholar 

  121. C. Sturm et al., Evidence for a soft nuclear equation-of-state from kaon production in heavy-ion collisions. Phys. Rev. Lett. 86, 39–42 (2001)

    ADS  CAS  PubMed  Google Scholar 

  122. Ch. Hartnack et al., Hadronic matter is soft. Phys. Rev. Lett. 96, 012302 (2006)

    ADS  PubMed  Google Scholar 

  123. P. Crochet et al., Sideward flow of k+ mesons in ru+ru and ni+ni reactions near threshold. Phys. Lett. B 486(1), 6–12 (2000)

    ADS  CAS  Google Scholar 

  124. S. Albergo et al., \(\lambda \) spectra in \(116 a\) gev au-au collisions. Phys. Rev. Lett. 88, 062301 (2002)

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 11927901 and 11890712, and by Tsinghua University Scientific Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Carlos Munoz Camacho.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, D., He, X., Li, P. et al. Studies of nuclear equation of state with the HIRFL-CSR external-target experiment. Eur. Phys. J. A 60, 36 (2024). https://doi.org/10.1140/epja/s10050-024-01245-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01245-2

Navigation