Skip to main content
Log in

Measurement of the flux-weighted cross-sections for the natYb(γ,xn)175,169,167Yb reactions in the Bremsstrahlung end-point energies of 12–16 MeV and 60–70 MeV

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The flux-weighted cross-sections of the natYb(γ, xn)175,169,167Yb reactions were measured at the bremsstrahlung end-point energies of 12, 14, 16, 60, 65, and 70 MeV by the activation and off-line γ-ray spectrometric technique using the 20 MeV electron linac (ELBE) at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, and 100 MeV electron linac at the Pohang Accelerator Laboratory (PAL), Korea. The natYb(γ, xn)175,169,167Yb reaction cross-sections as a function of photon energy were also calculated theoretically using the TALYS 1.9 code. The flux-weighted average values at different end-point energies were obtained from the literature as well as from the theoretical values reported in the TALYS library based on mono-energetic photons. They were compared with the flux-weighted values based on the present experimental data and were found to be in general agreement. It was also found that the experimental and theoretical cross-section data increased from the threshold values to a certain energy, where other reaction channels opened, which highlights the role of excitation energy. After a certain value, the individual reaction cross-sections decrease with an increase in bremsstrahlung energy owing to the opening of other reaction channels, which indicates the partitioning of energy in different reaction channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

The manuscript has associated data in a data repository [Authors’ comment: All data used in this paper are deposited in the EXFOR data library (http://www-nds.iaea.org/exfor) and TENDEL-2019 data library (http://tendl.web.psi.ch/tendl_2019/tendl2019.html) and the data produced during this study will be deposited in the EXFOR data library].

References

  1. F. Carminati, R. Klapisch, J.P. Revol, Ch. Roche, J.A. Rubio, C. Rubia, An energy amplifier for cleaner and inexhaustible nuclear energy production driven by a particle accelerator, CERN/AT/93-49(ET), 1993. Available at: https://cds.cern.ch/record/256520/files/at-93-047. Accessed 7 July 2023

  2. C. Rubia, S. Buono, Y. Kadi, J.A. Rubio, Fast neutron incineration in the energy amplifier as alternative to geologic storage: the case of Spain, CERN/LHC/97–01(EET), 1997. Available at: https://cds.cern.ch/record/322090/files/ihc-97-001. Accessed 7 July 2023

  3. Accelerator Driven Systems: Energy Generation and Transmutation of Nuclear Waste, Status report, IAEA, Vienna, IAEA-TECDO-985, 1997.

  4. C.D. Bowman, Annu. Rev. Nucl. Part. Sci. 48, 505 (1998)

    Article  ADS  Google Scholar 

  5. S. Ganesan, Pramana 68, 257 (2007)

    Article  ADS  Google Scholar 

  6. A. Nuttin, D. Heuer, A. Billebaud, R. Brissot, C. Le Brun, E. Liatard, J.M. Loiseaux, L. Mathieu, O. Meplan, E. Merle-Lucotte, H. Nifenecker, F. Perdu, S. David, Proc. Nucl. Energy 46, 77 (2005)

    Article  Google Scholar 

  7. T.R. Allen, D.C. Crawford, Sci. Technol. Nucl. Install. Article ID 97486 (2007).

  8. R.K. Sinha, A. Kakodkar, Nucl. Eng. Des. 236, 683 (2006)

    Article  Google Scholar 

  9. Y.-O. Lee, Y. Han, J.-Y. Lee, J. Chang, J. Korean Nucl. Soc. 31, 529 (1999)

    Google Scholar 

  10. T. Mukhopadhyay, D. Basu, Eur. Phys. J. A 45, 121 (2010)

    Article  ADS  Google Scholar 

  11. IAEA Hand book on photonuclear data for applications Cross- sections and spectra. IAEA-TECDOC-1178, Available online at http://www-nds.iaea.org. Accessed 7 July 2023

  12. S.F. Mughabghab, M. Divadeenam, N.E. Holden, Neutron resonance and thermal cross sections, vol. 1 (Academic Press, New York, 1981)

    Google Scholar 

  13. Nuclear Energy Agency (NEA), Evaluated Nuclear Data Library Descriptions, ENDF/B-VIII.0 and JEFF-3.3, Available at: http://www.oecd-nea.org/. Accessed 7 July 2023

  14. IAEA-EXFOR, Experimental Nuclear Reaction Data, Available online at http://www-nds.iaea.org/exfor. Accessed 7 July 2023

  15. N. Otuka, E. Dupont, V. Semkova, B. Pritychenko, A.I. Blokhin, M. Aikawa, S. Babykina, M. Bossant, G. Chen, S. Dunaeva, R.A. Forrest, T. Fukahori, N. Furutachi, S. Ganesan, Z. Ge, O.O. Gritzay, M. Herman, B. Lalremruata, Y.O. Lee, A. Makinaga, K. Matsumoto, M. Mikhaylyukova, G. Pikulina, V.G. Pronyaev, A. Saxena, O. Schwerer, S.P. Simakov, N. Soppera, R. Suzuki, X. Tao, S. Taova, V.V. Varlamov, J. Wang, S.C. Yang, V. Zerkin, Y. Zhuang, Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between nuclear reaction data centres (NRDC) Nucl Data Sheets 120, 272(2014). https://doi.org/10.1016/j.nds.2014.07.065

  16. M. N. Harakeh, A. van der Woude, Giant resonances: fundamental high-frequency modes of nuclear excitation, Oxford Studies in Nuclear Physics, Oxford University Press, USA, July 2001, ISBN 978-0-19-851733-7

  17. P. F. Bortignon, A. Bracco, R. A. Broglia, Giant resonances, contemporary concepts in physics, CRC Press, July 1998, ISBN 978-90-5702-570-9

  18. G. Baldwin, G. Klaiber, Photo-fission in heavy elements. Phys. Rev. 71(1), 3–10 (1947)

    Article  ADS  Google Scholar 

  19. G.T. Bholane, T.S. Ganesapandy, A.B. Phatangare, F.M.D. Attar, S.S. Dahiwale, S.V. Suryanarayana, V.N. Bhoraskar, S.D. Dhole, Radia. Phys. Chem. 195, 110066 (2022)

    Article  Google Scholar 

  20. E. Vagena, S. Stoulos, Eur. Phys. J. A 54, 153 (2018)

    Article  ADS  Google Scholar 

  21. A.J. Koning, D. Rochman, Nucl. Data Sheets 113 (2012) 2841, Available from: http://www.talys.eu. Accessed 7 July 2023

  22. A. J. Koning, S. Hilaire, S. Goriely, TALYS-1.9, a nuclear reaction program. (2015) Available online at: http://www.talys.eu/download-talys/. Accessed 7 July 2023

  23. M. Erhard, A.R. Junghans, C. Nair, R. Schwengner, R. Beyer, J. Klug, K. Kosev, A. Wagner, Phys. Rev. C 81, 034319 (2010)

    Article  ADS  Google Scholar 

  24. R. Schwengner, R. Beyer, F. Donau, E. Gosse, A. Hartmann, A.R. Junghans, S. Mallian, G. Rusev, K.D. Schilling, W. Schulze, A. Wagner, Nuc. Instrum. Meth. A 555, 211 (2005)

    Article  ADS  Google Scholar 

  25. H. Naik, G.N. Kim, R. Schwengner, K. Kim, M. Zaman, M. Tatari, M. Sahid, S.C.Yang, R. John, R. Massavczyk, A. Junghans, S. G. Shin,Y. Key, A. Wagner, M. W. Lee, A. Goswami M.-H. Cho, Nucl. Phys. A. 916, 168 (2013).

  26. C.F. Weizsacker, Z. Phys. 88, 612 (1934)

    Article  ADS  Google Scholar 

  27. E.J. Williams, Phys. Rev. 45, 729 (1934)

    Article  ADS  Google Scholar 

  28. NuDat 2.6, National Nuclear Data Center, Brookhaven National Laboratory, updated 2011, Available at: http://www.nndc.bnl.gov/. Accessed 7 July 2023

  29. S.Y.F. Chu, L.P. Ekstrom and R.B. Firestone, The Lund/LBNL, Nuclear Data Search, Version 2.0, February 1999, WWW Table of Radioactive Isotopes, Available at: http://nucleardata.nuclear.lu.se/toi/

  30. S. Agostinelli et al., Nucl. Instrum. Meth. A 506, 250 (2005)

    Article  ADS  Google Scholar 

  31. J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)

    Article  ADS  Google Scholar 

  32. B. Veyssiere, H. Beil, R. Bergere, P. Carlos, A. Lepretre, Nucl. Phys. A 159, 561 (1970)

    Article  ADS  Google Scholar 

  33. C. Fultz, R.L. Bramblett, J.T. Caldwell, N.A. Kerr, Phys. Rev. 127, 1273 (1962)

    Article  ADS  Google Scholar 

  34. K. Vogt, P. Mohr, M. Babilon, W. Bayer, D. Galaviz, T. Hartmann, C. Hutter, T. Rauscher, K. Sonnabend, S. Volz, A. Zilges, Nucl. Phys, A 707, 241 (2002).

  35. K.Y. Hara, H. Harada, F. Kitatani, S. Goko, S.Y. Hohara, T. Kaihori, A. Makinaga, H. Utsunomiya, H. Toyokawa, K. Yamada, J. Nucl. Sci. Tech. 44, 938 (2007)

    Article  Google Scholar 

  36. V.V. Varlamov, B.S. Ishkhanov, V.N. Orlin, S. Yu. Troshchiev, Izv. Rossiiskoi Akademii Nauk, Ser. Fiz., 74, 884 (2010).

  37. V.Di. Napoli, A.M. Lacerenja, F. Salvetti, H.G. De Carvalho, J. Benuzzi Martins, Letter Al Nuvo Cimento 1, 835 (1971).

  38. Calculator and Graph Engine for Atomic Nuclei Parameters and Nuclear Reactions and Radioactive Decay Features, March 22, 2010, Available from: http://cdfe.sinp.msu.ru/. Accessed 7 July 2023

  39. A.J. Koning, D. Rochman, S.C. van der Marck, J. Kopecky, J. Ch. Sublet, M. Fleming, E. Bauge, S. Hilaire, P. Romain, B. Morillon, H. Duarte, S. C van der Marck, S. Pomp, H. Sjostrand, R. Forrest, H. Henriksson, O. Cabellos, S. Goriely, J. Leppanen, H. Leeb, A. Plompen and R. Mills, TENDL-2015: TALYS-based evaluated nuclear data library, Available from: https://tendl.web.psi.ch/tendl_2015/tendl2015.html

Download references

Acknowledgements

The authors thank the staff of electron linac (ELBE) at HZDR, Dresden, Germany and PAL, Pohang, Korea for providing the electron beam to conduct the experiments. This research was partly supported by the National Research Foundation of Korea (NRF) through grants provided by the Ministry of Science, and ICT (NRF-2017R1D1A1B03030484, NRF-2018R1A6A1A06024970, and NRF-2019H1D3A2A01102637).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Kim.

Additional information

Communicated by Takashi Nakamura

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, H., Kim, G.N., Schwengner, R. et al. Measurement of the flux-weighted cross-sections for the natYb(γ,xn)175,169,167Yb reactions in the Bremsstrahlung end-point energies of 12–16 MeV and 60–70 MeV. Eur. Phys. J. A 59, 249 (2023). https://doi.org/10.1140/epja/s10050-023-01137-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01137-x

Navigation