Skip to main content
Log in

Fluidity of the system produced in relativistic pp and heavy-ion collisions: Hadron resonance gas model approach

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We have estimated the dimensionless parameters such as Reynolds number (Re), Knudsen number (Kn) and Mach number (Ma) for a multi-hadron system by using the excluded volume hadron resonance gas (EVHRG) model along with Hagedorn mass spectrum to include higher resonances in the system. The size dependence of these parameters indicate that the system formed in proton+proton collisions may achieve thermal equilibrium making it unsuitable as a benchmark to analyze the properties of the system produced in heavy ion collisions at similar energies. While the magnitude of Kn can be used to study the degree of thermalization and applicability of inviscid hydrodynamics, the variations of Re and Ma with temperature (T) and baryonic chemical potential (\(\mu _B\)) assist to understand the change in the nature of the flow in the system. Indeed the nature of flow changes from laminar to turbulent as Re increases and the system is characterized as incompressible for low \(Ma (<<1)\) and compressible for larger Ma. Ma can also be used to understand whether the flow is subsonic or supersonic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: In case the data are required by any of the readers, we shall provide the same upon request to the corresponding author.]

References

  1. P. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005)

    Article  ADS  Google Scholar 

  2. I. Arsene et al. (BRAHMS Collaboration), Nucl. Phys. A 757, 1 (2005)

  3. B.B. Back et al. (PHOBOS Collaboration), Nucl. Phys. A 757, 28 (2005)

  4. J. Adams et al. (STAR Collaboration), Nucl. Phys. A 757, 102 (2005)

  5. K. Adcox et al. (PHENIX Collaboration), Nucl. Phys. A 757, 184 (2005)

  6. J. Adam et al. (ALICE Collaboration), Nat. Phys. 13, 535 (2017)

  7. V. Khachatryan et al. (CMS Collaboration), Phys. Lett. B 765, 193 (2017)

  8. D. Velicanu [CMS Collaboration], J. Phys. G 38, 124051 (2011)

  9. R. Campanini, G. Ferri, Phys. Lett. B 703, 237 (2011)

    Article  ADS  Google Scholar 

  10. D. Thakur, S. De, R. Sahoo, S. Dansana, Phys. Rev. D 97, 094002 (2018)

    Article  ADS  Google Scholar 

  11. D. Sahu, S. Tripathy, R. Sahoo, S.K. Tiwari. Eur. Phys. J. A 58, 78 (2022)

  12. P. Romatschke, U. Romatschke, Relativistic Fluid Dynamics In and Out of Equilibrium (Cambridge University Press, Cambridge, 2019, ISBN 978-1-108-48368-1, 978-1-108-75002-8)

  13. R.S. Bhalerao, J.P. Blaizot, N. Borghini, J.Y. Ollitrault, Phys. Lett. B 627, 49 (2005)

    Article  ADS  Google Scholar 

  14. H.J. Drescher, A. Dumitru, C. Gombeaud, J.Y. Ollitrault, Phys. Rev. C 76, 024905 (2007)

    Article  ADS  Google Scholar 

  15. W.T. Deng, X.G. Huang, Phys. Rev. C 93, 064907 (2016)

    Article  ADS  Google Scholar 

  16. J.-Y. Ollitrault, Eur. J. Phys. 29, 275 (2008)

    Article  Google Scholar 

  17. A. Andronic, P. Braun-Munzinger, J. Stachel, M. Winn, Phys. Lett. B 718, 80 (2012)

    Article  ADS  Google Scholar 

  18. V. Vovchenko, D.V. Anchishkin, M.I. Gorenstein, Phys. Rev. C 91, 024905 (2015)

    Article  ADS  Google Scholar 

  19. D.H. Rischke, M.I. Gorenstein, H. Stöcker, W. Greiner, Z. Phys. C 51, 485 (1991)

  20. R. Hagedorn, J. Ranft, Nuovo Cim. Suppl. 6, 169 (1968)

    Google Scholar 

  21. G.P. Kadam, H. Mishra, Phys. Rev. C 92, 035203 (2015)

    Article  ADS  Google Scholar 

  22. Mirco Cannoni, Phys. Rev. D 89, 103533 (2014)

    Article  ADS  Google Scholar 

  23. P. Gondolo, G. Gelmini, Nucl. Phys. B 360, 145 (1991)

    Article  ADS  Google Scholar 

  24. S.K. Tiwari, S. Tripathy, R. Sahoo, N. Kakati, Eur. Phys. J. C 78, 938 (2018)

    Article  ADS  Google Scholar 

  25. G. Kadam, S. Pawar, Adv. High Energy Phys. 2019, 6795041 (2019)

    Article  Google Scholar 

  26. J. Noronha-Hostler, J. Noronha, C. Greiner, Phys. Rev. C 86, 024913 (2012)

    Article  ADS  Google Scholar 

  27. J. Noronha-Hostler, J. Noronha, C. Greiner, Phys. Rev. Lett. 103, 172302 (2009)

    Article  ADS  Google Scholar 

  28. L.D. Landau, E.M Lifshitz, Fluid mechanics, Pergamon Press, 1987, ISBN 978-0-08-033933-7

  29. G.S. Denicol, H. Niemi, E. Molnár, D.H. Rischke, Phys. Rev. D 85, 114047 (2012) (Erratum Phys. Rev. D 91, 039902 (2015))

  30. B. Betz, D. Henkel, D.H. Rischke, Prog. Part. Nucl. Phys. 62, 556 (2009)

    Article  ADS  Google Scholar 

  31. C. Chiu, C. Shen, Phys. Rev. C 103(6), 064901 (2021)

    Article  ADS  Google Scholar 

  32. E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics (Butterworth-Heinemann Ltd., 1981, ISBN 978-0-08-057049-5)

  33. L.P. Csernai, D.D. Strottman, C.S. Androlik, Phys. Rev. C 85, 054901 (2012)

    Article  ADS  Google Scholar 

  34. A. Monnai, S. Mukherjee, Y. Yin, Phys. Rev. C 95, 034902 (2017)

    Article  ADS  Google Scholar 

  35. P.A. Zyla et al. (Particle Data Group), PTEP 2020(8), 083C01 (2020)

  36. P. Braun-Munzinger, I. Heppe, J. Stachel, Phys. Lett. B 465, 15 (1999)

    Article  ADS  Google Scholar 

  37. K. Redlich, K. Zalewski. arXiv:1611.03746 (2016)

  38. A. Bhattacharyya, R. Ray, S. Samanta, S. Sur, Phys. Rev. C 91, 041901(R) (2015)

    Article  ADS  Google Scholar 

  39. N. Sarkar, P. Ghosh, Phys. Rev. C 96, 044901 (2017)

    Article  ADS  Google Scholar 

  40. K. Aamodt et al. (ALICE), Phys. Rev. D 84, 112004 (2011)

  41. J. Adam et al. (ALICE), Phys. Rev. C 91, 034906 (2015)

  42. S. Acharya et al. (ALICE), Phys. Rev. C 100, 024002 (2019)

  43. S. Chatterjee, S. Das, L. Kumar, D. Mishra, B. Mohanty, R. Sahoo, N. Sharma, Adv. High Energy Phys. 2015, 349013 (2015)

  44. D. Sahu, S. Tripathy, G.S. Pradhan, R. Sahoo, Phys. Rev. C 101, 014902 (2020)

    Article  ADS  Google Scholar 

  45. S. Acharya et al. (ALICE), Phys. Lett. B 802, 135225 (2020)

  46. M. Gorenstein, M. Hauer, O. Moroz, Phys. Rev. C 77, 024911 (2008)

    Article  ADS  Google Scholar 

  47. G.S. Denicol, C. Gale, S. Jeon, J. Noronha, Phys. Rev. C 88, 064901 (2013)

    Article  ADS  Google Scholar 

  48. G. Kadam, H. Mishra, Phys. Rev. D 100, 074015 (2019)

    Article  ADS  Google Scholar 

  49. S. Borsányi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, K.K. Szabó, Phys. Lett. B 730, 99 (2014)

    Article  ADS  Google Scholar 

  50. N.A. Tawfik, L.I. Abou-Salem, A.G. Shalaby, M. Hanafy, A. Sorin, O. Rogachevsky, W. Scheinast, Eur. Phys. J. A 52, 324 (2016)

    Article  ADS  Google Scholar 

  51. P. Braun-Munzinger, D. Magestro, K. Redlich, J. Stachel, Phys. Lett. B 518, 41 (2001)

    Article  ADS  Google Scholar 

  52. J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C 73, 034905 (2006)

    Article  ADS  Google Scholar 

  53. A. Khuntia, S.K. Tiwari, P. Sharma, R. Sahoo, T.K. Nayak, Phys. Rev. C 100, 014910 (2019)

    Article  ADS  Google Scholar 

  54. B. McInnes, Nucl. Phys. B 921, 39 (2017)

    Article  ADS  Google Scholar 

  55. M.M. Aggarwal et al. (STAR collaboration), Phys. Rev. C 82, 024912 (2010)

  56. A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett. 104, 252301 (2010)

  57. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B. 739, 320 (2014)

  58. S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. C. 90, 024908 (2014)

  59. C. Nattrass, N. Sharma, J. Mazer, M. Stuart, A. Bejnood, Phys. Rev. C 94, 011901 (2016)

    Article  ADS  Google Scholar 

  60. G. Sarwar, M. Hasanujjaman, M. Rahaman, A. Bhattacharyya, J. Alam, Phys. Lett. B 820, 136583 (2021)

    Article  Google Scholar 

  61. I. Bouras, A. El, O. Fochler, H. Niemi, Z. Xu, C. Greiner, Phys. Lett. B 710, 641 (2012) (erratum: Phys. Lett. B 728, 156 (2014))

  62. I. Bouras et al., J. Phys. Conf. Ser. 270, 012012 (2011)

    Article  Google Scholar 

  63. W. Israel, J.M. Stewart, Ann. Phys. 118, 341 (1979)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research work has been carried out with financial support from DAE-BRNS, the Government of India, Project No. 58/14/29/2019-BRNS of Raghunath Sahoo. For the research fellowship, Ronald Scaria acknowledges CSIR, Govt. of India. CRS and RS acknowledge the financial support under the above BRNS project. Further R.S. acknowledges the financial support under the CERN Scientific Associateship, CERN, Geneva, Switzerland. The authors acknowledge the Tier-3 computing facility in the experimental high-energy physics laboratory of IIT Indore supported by the ALICE project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghunath Sahoo.

Additional information

Communicated by Giorgio Torrieri.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scaria, R., Sahu, D., Singh, C.R. et al. Fluidity of the system produced in relativistic pp and heavy-ion collisions: Hadron resonance gas model approach. Eur. Phys. J. A 59, 140 (2023). https://doi.org/10.1140/epja/s10050-023-01052-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01052-1

Navigation