Skip to main content
Log in

Kaon spectrum revisited: bound states of high energy and spin

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The European Organization for Nuclear Research (CERN) has recently approved a world-unique QCD facility in which an updated version of the external M2 beam line of the CERN SPS in conjunction with a universal spectrometer of the COMPASS experiment is used. One of its main goals is to use highly intense and energetic kaon beams to map out the complete spectrum of excited kaons with an unprecedented precision; having a broad impact not only on low-energy QCD phenomenology, but also on many high-energy particle processes where excited kaons appear, such as the study of CP violation in heavy-meson decays studied at LHCb and Belle II. In support of the experimental effort, the kaon spectrum is computed herein using a constituent quark model which has been successfully applied to a wide range of hadronic observables, from light to heavy quark sectors, and thus the model parameters are completely constrained. The model’s prediction can be used as a template against which to compare the already collected data and future experimental findings, in order to distinguish between conventional and exotic kaon states. We also compare our results with those available in the literature in order to provide some general statements, common to all calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All information necessary to reproduce the results described herein is contained in the material presented above.]

References

  1. B. Aubert et al. (BaBar), Phys. Rev. D 78, 034023 (2008), arXiv:0804.2089

  2. A. Poluektov et al. (Belle), Phys. Rev. D 81, 112002 (2010), arXiv:1003.3360

  3. R. Aaij et al. (LHCb), Nucl. Phys. B 888, 169 (2014), arXiv:1407.6211

  4. P. A. Zyla et al. (Particle Data Group), PTEP 2020, 083C01 (2020)

  5. K. Aoki et al. (2021), arXiv:2110.04462

  6. J. Vijande, F. Fernandez, A. Valcarce, J. Phys. G 31, 481 (2005). arXiv:hep-ph/0411299

    Article  ADS  Google Scholar 

  7. J. Segovia, D.R. Entem, F. Fernandez, E. Hernandez, Int. J. Mod. Phys. E 22, 1330026 (2013). arXiv:1309.6926

    Article  ADS  Google Scholar 

  8. A. Valcarce, F. Fernandez, P. Gonzalez, V. Vento, Phys. Lett. B 367, 35 (1996). arXiv:nucl-th/9509009

    Article  ADS  Google Scholar 

  9. A. Valcarce, H. Garcilazo, J. Vijande, Phys. Rev. C 72, 025206 (2005). arXiv:hep-ph/0507297

    Article  ADS  Google Scholar 

  10. J. Segovia, D.R. Entem, F. Fernandez, Phys. Rev. D 83, 114018 (2011)

    Article  ADS  Google Scholar 

  11. J. Segovia, D.R. Entem, F. Fernandez, Phys. Rev. D 91, 094020 (2015). arXiv:1502.03827

    Article  ADS  Google Scholar 

  12. G. Yang, J. Ping, P.G. Ortega, J. Segovia, Chin. Phys. C 44, 023102 (2020). arXiv:1904.10166

    Article  ADS  Google Scholar 

  13. D.R. Entem, F. Fernandez, A. Valcarce, Phys. Rev. C 62, 034002 (2000)

    Article  ADS  Google Scholar 

  14. A. Valcarce, H. Garcilazo, F. Fernandez, P. Gonzalez, Rept. Prog. Phys. 68, 965 (2005). arXiv:hep-ph/0502173

    Article  ADS  Google Scholar 

  15. P.G. Ortega, J. Segovia, D.R. Entem, F. Fernández, Phys. Rev. D 95, 034010 (2017). arXiv:1612.04826

    Article  ADS  Google Scholar 

  16. P.G. Ortega, J. Segovia, D.R. Entem, F. Fernández, Eur. Phys. J. C 79, 78 (2019). arXiv:1808.00914

    Article  ADS  Google Scholar 

  17. J. Vijande, F. Fernandez, A. Valcarce, B. Silvestre-Brac, Eur. Phys. J. A 19, 383 (2004). arXiv:hep-ph/0310007

    Article  ADS  Google Scholar 

  18. G. Yang, J. Ping, J. Segovia, Phys. Rev. D 99, 014035 (2019). arXiv:1809.06193

    Article  ADS  Google Scholar 

  19. G. Yang, J. Ping, J. Segovia, Phys. Rev. D 101, 074030 (2020). arXiv:2003.05253

    Article  ADS  Google Scholar 

  20. P.G. Ortega, J. Segovia, F. Fernandez, Phys. Rev. D 104, 094004 (2021). arXiv:2107.02544

    Article  ADS  Google Scholar 

  21. G. Yang, J. Ping, J. Segovia, Phys. Rev. D 104, 094035 (2021). arXiv:2109.04311

    Article  ADS  Google Scholar 

  22. J. Segovia, D.R. Entem, F. Fernandez, Phys. Lett. B 662, 33 (2008)

    Article  ADS  Google Scholar 

  23. E. Hiyama, Y. Kino, M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003)

    Article  ADS  Google Scholar 

  24. D. Diakonov, Prog. Part. Nucl. Phys. 51, 173 (2003). arXiv:hep-ph/0212026

    Article  ADS  Google Scholar 

  25. G. S. Bali, H. Neff, T. Duessel, T. Lippert, K. Schilling (SESAM), Phys. Rev. D 71, 114513 (2005), arXiv:hep-lat/0505012

  26. S. Capstick, N. Isgur, AIP Conf. Proc. 132, 267 (1985)

    Article  ADS  Google Scholar 

  27. A. Manohar, H. Georgi, Nucl. Phys. B 234, 189 (1984)

    Article  ADS  Google Scholar 

  28. W. Lucha, F.F. Schoberl, D. Gromes, Phys. Rept. 200, 127 (1991)

    Article  ADS  Google Scholar 

  29. A.N. Aleev et al. (EXCHARM), Phys. Atom. Nucl. 56, 1358 (1993)

  30. C.-Q. Pang, J.-Z. Wang, X. Liu, T. Matsuki, Eur. Phys. J. C 77, 861 (2017). arXiv:1705.03144

    Article  ADS  Google Scholar 

  31. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985)

    Article  ADS  Google Scholar 

  32. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 79, 114029 (2009). arXiv:0903.5183

  33. F.E. Close, N.A. Tornqvist, J. Phys. G 28, R249 (2002). arXiv:hep-ph/0204205

    Article  ADS  Google Scholar 

  34. C. Amsler, N. A. Törnqvist, Physics Reports 389, 61 (2004) (ISSN 0370-1573)

  35. D.V. Bugg, Phys. Rept. 397, 257 (2004). arXiv:hep-ex/0412045

    Article  ADS  Google Scholar 

  36. E. Klempt, A. Zaitsev, Phys. Rept. 454, 1 (2007). arXiv:0708.4016

    Article  ADS  Google Scholar 

  37. J.R. Pelaez, Phys. Rept. 658, 1 (2016). arXiv:1510.00653

    Article  ADS  Google Scholar 

  38. J. Vijande, A. Valcarce, F. Fernandez, B. Silvestre-Brac, Phys. Rev. D 72, 034025 (2005). arXiv:hep-ph/0508142

    Article  ADS  Google Scholar 

  39. R. Aaij et al. (LHCb), Phys. Rev. Lett. 118, 022003 (2017), arXiv:1606.07895

  40. D. Aston, T. Bienz, F. Bird, W. Dunwoodie, W. Johnson, P. Kunz, Y. Kwon, D. Leith, L. Levinson, B. Ratcliff, et al., Physics Letters B 308, 186 (1993) (ISSN 0370-2693)

  41. J. Yamagata-Sekihara, L. Roca, E. Oset, Phys. Rev. D 82, 094017 (2010), [Erratum: Phys.Rev.D 85, 119905 (2012)], arXiv:1010.0525

Download references

Acknowledgements

This work has been partially funded by EU Horizon 2020 research and innovation program, STRONG-2020 project, under Grant agreement no. 824093; Ministerio Español de Ciencia e Innovación, Grant no. PID2019-107844GB-C22 and PID2019-105439GB-C22; and Junta de Andalucía, contract nos. P18-FR-5057 and Operativo FEDER Andalucía 2014-2020 UHU-1264517.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Segovia.

Additional information

Communicated by E. Oset.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taboada-Nieto, U., Ortega, P.G., Entem, D.R. et al. Kaon spectrum revisited: bound states of high energy and spin. Eur. Phys. J. A 59, 40 (2023). https://doi.org/10.1140/epja/s10050-023-00963-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-00963-3

Navigation