Skip to main content
Log in

Measurement of the \(\varvec{^{nat}}\)Eu(\(\varvec{n,\gamma }\)) cross section up to 500 keV at the CSNS Back-n facility, and the stellar \(\varvec{^{151,153}}\)Eu(\(\varvec{n,\gamma }\)) cross section at s-process temperatures

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In nuclear astrophysics, the nuclides \(^{151}\)Eu and \(^{153}\)Eu are both in the path of the s-process, and their (n, \(\gamma \)) cross sections are important input parameters for the calculation of the nuclear astrophysics network. According to the EXFOR database, the neutron capture cross section of natural europium in the resonance region has not been fully measured. The (n,\(\gamma \)) cross section of \(^{nat}\)Eu was measured using the time-of-flight (TOF) technique at the Back-n white neutron source facility of the China Spallation Neutron Source (CSNS) in the 1 eV–to 500 keV range. Four C\(_{6}\)D\(_{6}\) liquid scintillator detectors and pulse height weighting techniques were used to measure prompt \(\gamma \) rays and analyze the data. The results of the analysis were compared with the evaluated data of ENDF/B-VIII.0 and JENDL-5.0. It shows that there are some differences between the measurement results and different evaluated data libraries. The resonance parameters of \(^{151}\)Eu and \(^{153}\)Eu were extracted in the 1  eV–150 eV region using the R-Matrix code SAMMY. The accurate Maxwellian-averaged capture cross section (MACS) is derived over the temperature range of the s-process nucleosynthesis model. The result shows that at kT=30 keV, the MACS value of \(^{151}\)Eu is 3417 ± 297 mb and the value of \(^{153}\)Eu is 2718 ± 237 mb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: First, the raw data we acquired in the experiment occupied too much data storage, amounting to 1 T. Second, the cross section data resulting from the data processing we will try to upload to the EXFOR database in the future.]

References

  1. F. Käppeler et al., Prog. Part. Nucl. Phys. 43, 419 (1999)

    Article  ADS  Google Scholar 

  2. R. Reifarth et al., J. Phys. G. Nucl. Part. Phys. 41, 053101 (2014)

    Article  ADS  Google Scholar 

  3. Y.Z Qian et al., Prog. Part. Nucl. Phys., 50, 153(2003)

  4. W.A. Fowler et al., Rev. Mod. Phys. 56, 149 (1984)

    Article  ADS  Google Scholar 

  5. W. Aoki et al., Astrophys. J. 592, L67 (2003)

    Article  ADS  Google Scholar 

  6. C. Arlandini et al., Astrophys. J. 525, 886 (1999)

    Article  ADS  Google Scholar 

  7. K. Toukan et al., Phys. Rev. C 51, 1540 (1995)

    Article  ADS  Google Scholar 

  8. G. Chiba et al., J Nucl Sci Technol 47, 652 (2010)

    Article  Google Scholar 

  9. D.A. Brown et al., Nucl. Data Sheets 148, 1 (2018)

    Article  ADS  Google Scholar 

  10. A.J. Koning et al., Nucl. Data Sheets 155 (2019)

  11. O. Iwamoto et al., EPJ Web Conf. 239, 09002 (2020)

    Article  Google Scholar 

  12. V.A. Konks et al., Yadern. Fiz. 7, 493–9 (1968)

    Google Scholar 

  13. V.A. Konks et al., Joint Inst. for Nucl., 100(1964)

  14. F. Widder et al., R,INDC(SWT), 009(1975)

  15. J.Y Tang et al.,Nucl Sci Tech, 32, 11(2021)

  16. Q. An et al., J. Instrum. 12, P07022 (2017)

    Article  Google Scholar 

  17. L.Y Zhang et al., Radiat. Phys. Chem., 127, 133(2016)

  18. J. Ren et al., Radiat. Detect. Technol. Methods 3, 1 (2019)

    Google Scholar 

  19. Y.H Chen et al., Eur. Phys. J.A, 55, 1(2019)

  20. Q Li et al., Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip., 946, 162497(2019)

  21. M.C. Moxon et al., Nucl. Instrum. Methods. 24, 445 (1963)

    Article  ADS  Google Scholar 

  22. R.L. Macklin et al., Phys. Rev. 159, 1007 (1967)

    Article  ADS  Google Scholar 

  23. A. Borella et al., Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip., 577, 626(2007)

  24. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip., 506, 250(2003)

  25. X.X Li et al., Nucl. Technol., 43, (2020)

  26. J Ren et al., Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip., 985, 164703(2021)

  27. D. Syme et al., Nucl. Instrum. Methods Phys. Res. 198, 357 (1982)

    Article  ADS  Google Scholar 

  28. J.L Tain et al., J Nucl Sci Technol, 39, 689(2002)

  29. N.M. Larson, Oak Ridge National Laboratory, (2008)

  30. G. Leinweber et al., Ann. Nucl. Energy 69, 74 (2014)

    Article  Google Scholar 

  31. M.V. Bokhovko et al., R, FEI-2168-91, (1991)

  32. A. Koning et al., ND2017, 211-214(2007)

  33. W. Hauser et al., Phys. Rev. 87, 366 (1952)

    Article  ADS  Google Scholar 

  34. B. Morillon et al., Phys. Rev. C 70, 014601 (2004)

    Article  ADS  Google Scholar 

  35. S.L Chen et al.,EPJ Web Conf., 239, 01032(2020)

  36. R.L. Macklin et al., Nucl. Sci. Eng. 95, 189 (1987)

    Article  ADS  Google Scholar 

  37. J. Lee et al., J. Nucl. Sci. Technol. 54, 1046 (2017)

    Article  Google Scholar 

  38. M.C. Moxon et al., Ann. Nucl. Energy 3, 399 (1976)

    Article  Google Scholar 

  39. Y.J. Xia et al., Nucl. Data for Sci. Techn. 1, 251 (1994)

    Google Scholar 

  40. G. Tagliente et al., Aristotle University of Thessaloniki, (2011)

  41. T. Rauscher et al., Atomic Data Nucl. Data Tables 75, 1 (2000)

    Article  ADS  Google Scholar 

  42. M. Harris et al., Astrophys. Space Sci. 77, 357 (1981)

    Article  ADS  Google Scholar 

  43. J. Holmes et al., Atomic Data Nucl. Data Tables 18, 305 (1976)

    Article  ADS  Google Scholar 

  44. S. Goriely et al., Hauser-Feshbach rates for neutron capture reactions, (2005)

  45. B. Allen et al., Adv. Nucl. Phys. 4, 205 (1971)

    Article  Google Scholar 

  46. Y. Kikuchi et al, Japan Atomic Energy Research Institute (1981)

  47. J.B.Czirr, R,UCRL, 50804(1970)

  48. R.C.Block, C, 61SACLAY, 203, 6107(1961)

  49. V.N. Kononov et al., Sov J Nucl Phys 26, 500 (1977)

    Google Scholar 

  50. J.R.D. Lepine et al., Nucl. Phys. A 196, 83 (1972)

    Article  ADS  Google Scholar 

  51. J.C. Chou et al., J. Nucl. Energy 27, 811 (1973)

    Article  ADS  Google Scholar 

  52. Z.Y Xiang et al.,Nucl Sci Eng, 104, 277(1990)

  53. G. Cescutti et al., Mon. Notices Royal Astron. Soc. 478, 4101 (2018)

    Article  ADS  Google Scholar 

  54. X.X Li et al., Phys. Rev. C, 104, 054302(2021)

  55. J. Best et al., Phys. Rev. C 64, 015801 (2001)

    Article  ADS  Google Scholar 

  56. H. Stoll, thesis, University of Karlsruhe (1993)

  57. M.V. Bokhovko et al., Nucl Data Sci Technol, 62(1992)

  58. M. Mizumoto et al., J. Nucl. Sci. Technol. 16, 711 (1979)

    Article  Google Scholar 

  59. R. Shaw et al., Rensselaer Polytechnic Institute, (1975)

  60. S. Goriely et al., Hauser-Feshbach rates for neutron capture reactions, (2002)

  61. S. Bednyakov et al., Sov. J. Atomic Energy 67, 675 (1990)

  62. V. Kononov et al., Yad. Fiz. 26, 947 (1977)

    Google Scholar 

  63. R.W. Hockenbury et al., Natl. Bur. Stands. 2, 905 (1975)

    Google Scholar 

  64. W.X. Yu, Chin. J. Nucl. Phys. 15, 71 (1993)

    Google Scholar 

Download references

Acknowledgements

We are grateful to the members of the CSNS Back-n Collaboration for enlightening discussions. This work is supported by the National Natural Science Foundation of China (Nos. U1832182, 11875328, 11761161001), the Natural Science Foundation of Guangdong Province, China (Nos. 18zxxt65, 2022A1515011184), the Science and Technology Development Fund, Macau SAR (File No. 008/2017/AFJ), the Macao Young Scholars Program of China (No. AM201907), China Postdoctoral Science Foundation (Nos. 2016LH0045, 2017M621573), and the Fundamental Research Funds for the Central Universities (Grant Nos. 22qntd3101, 2021qntd28).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Zhendong An.

Additional information

Communicated by Jose Benlliure.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., An, Z., Jiang, W. et al. Measurement of the \(\varvec{^{nat}}\)Eu(\(\varvec{n,\gamma }\)) cross section up to 500 keV at the CSNS Back-n facility, and the stellar \(\varvec{^{151,153}}\)Eu(\(\varvec{n,\gamma }\)) cross section at s-process temperatures. Eur. Phys. J. A 58, 251 (2022). https://doi.org/10.1140/epja/s10050-022-00887-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00887-4

Navigation