Skip to main content
Log in

Confronting a set of Skyrme and \(\chi _{EFT}\) predictions for the crust of neutron stars

On the origin of uncertainties in model predictions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

With the improved accuracy of neutron star observational data, it is necessary to derive new equation of state where the crust and the core are consistently calculated within a unified approach. For this purpose we describe non-uniform matter in the crust of neutron stars employing a compressible liquid-drop model, where the bulk and the neutron fluid terms are given from the same model as the one describing uniform matter present in the core. We then generate a set of fifteen unified equations of state for cold catalyzed neutron stars built on realistic modelings of the nuclear interaction, which belongs to two main groups: the first one derives from the phenomenological Skyrme interaction and the second one from \(\mathrm {\chi EFT} \) Hamiltonians. The confrontation of these model predictions allows us to investigate the model dependence for the crust properties, and in particular the effect of neutron matter at low density. The new set of unified equations of state is available at the CompOSE repository.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The fifteen EoS generated and analysed in the current study are available in the CompOSE repository, under the name ‘GMSR(name of interaction)’. It is available through EoS/Cold Neutron Star EoS/nucleonic models/Unified models/ from https://compose.obspm.fr/.]

Notes

  1. https://lorene.obspm.fr/.

  2. \(m_u=931.494028(23)\) MeV c\(^{-2}\).

  3. \(m(^{56}\)Fe\()=930.411790\) MeV c\(^{-2}\).

  4. \(m_n=939.565413(6)\) MeV c\(^{-2}\).

References

  1. J. Lattimer, M. Prakash, Science 304, 536 (2004)

    Article  ADS  Google Scholar 

  2. J.M. Lattimer, M. Prakash, Phys. Rep. 621, 127 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. G. Burgio, H.J. Schulze, I. Vidaña, J.B. Wei, Prog. Part. Nucl. Phys. 120, 103879 (2021)

    Article  Google Scholar 

  4. P. Haensel, A.Y. Potekhin, D.G. Yakovlev, Neutron Stars 1: Equation of State and Structure, vol. 326 (Springer, New York, 2007)

    Google Scholar 

  5. M.C. Miller et al., ApJ 887(1), L24 (2019)

    Article  ADS  Google Scholar 

  6. T.E. Riley et al., ApJL 887, L21 (2019)

    Article  ADS  Google Scholar 

  7. M.C. Miller et al., ApJL 918, L28 (2021)

    Article  ADS  Google Scholar 

  8. T.E. Riley et al., ApJL 918, L27 (2021)

    Article  ADS  Google Scholar 

  9. B.P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017)

    Article  ADS  Google Scholar 

  10. I. Tews, J. Carlson, S. Gandolfi, S. Reddy, ApJ 860(2), 149 (2018)

    Article  ADS  Google Scholar 

  11. M. Fortin, C. Providência, A.R. Raduta, F. Gulminelli, J.L. Zdunik, P. Haensel, M. Bejger, Phys. Rev. C 94, 035804 (2016)

    Article  ADS  Google Scholar 

  12. L. Suleiman, M. Fortin, J.L. Zdunik, P. Haensel, Phys. Rev. C 104, 015801 (2021)

    Article  ADS  Google Scholar 

  13. F. Douchin, P. Haensel, Astron. Astrophys. 380, 151 (2001)

    Article  ADS  Google Scholar 

  14. A.F. Fantina, N. Chamel, J.M. Pearson, S. Goriely, J. Phys. Conf. Ser. 342, 012003 (2012)

    Article  Google Scholar 

  15. G. Baym, H.A. Bethe, C. Pethick, Nucl. Phys. A 175, 225 (1971)

    Article  ADS  Google Scholar 

  16. M. Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi, X. Xu, Chin. Phys. C 41(3), 030003 (2017)

    Article  ADS  Google Scholar 

  17. T. Carreau, G. Gulminelli, J. Margueron, Eur. Phys. J. A 55, 188 (2019)

    Article  ADS  Google Scholar 

  18. G. Grams, J. Margueron, R. Somosundaram, S. Reddy, Few Body Syst. 62, 116 (2021)

    Article  ADS  Google Scholar 

  19. G. Grams, R. Somosundaram, J. Margueron, S. Reddy, To be submitted. arXiv:2110.00441 [nucl-th] (2021)

  20. W.D. Myers, Nucl. Phys. A 204, 465 (1973)

    Article  ADS  Google Scholar 

  21. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 627, 710 (1997)

    Article  ADS  Google Scholar 

  22. C. Ishizuka, T. Klähn, M. Mancini, M. Oertel, S. Typel. Compose. http://compose.obspm.fr (2018)

  23. J.M. Pearson, N. Chamel, A.Y. Potekhin, A.F. Fantina, C. Ducoin, A.K. Dutta, S. Goriely, MNRAS 481(3), 2994 (2018)

    ADS  Google Scholar 

  24. P. Danielewicz, J. Lee, Nucl. Phys. A 922, 1 (2014)

    Article  ADS  Google Scholar 

  25. B.T. Reed, F.J. Fattoyev, C.J. Horowitz, J. Piekarewicz, Phys. Rev. Lett. 126, 172503 (2021). https://doi.org/10.1103/PhysRevLett.126.172503

    Article  ADS  Google Scholar 

  26. J. Margueron, R. Hoffmann Casali, F. Gulminelli, Phys. Rev. C 97, 025805 (2018)

    Article  ADS  Google Scholar 

  27. C. Drischler, K. Hebeler, A. Schwenk, Phys. Rev. C 93, 054314 (2016)

    Article  ADS  Google Scholar 

  28. C. Drischler, J. Holt, C. Wellenhofer, Annu. Rev. Nucl. Part. Sci. 71(1), 403 (2021). https://doi.org/10.1146/annurev-nucl-102419-041903

    Article  ADS  Google Scholar 

  29. S. Goriely, M. Samyn, J.M. Pearson, Phys. Rev. C 75, 064312 (2007)

    Article  ADS  Google Scholar 

  30. N. Chamel, S. Goriely, J. Pearson, Nucl. Phys. A 812, 72 (2008)

    Article  ADS  Google Scholar 

  31. T. Lesinski, K. Bennaceur, T. Duguet, J. Meyer, Phys. Rev. C 74, 044315 (2006)

    Article  ADS  Google Scholar 

  32. L.G. Cao, U. Lombardo, C.W. Shen, N.V. Giai, Phys. Rev. C 73, 014313 (2006)

    Article  ADS  Google Scholar 

  33. M. Rayet, M. Arnould, F. Tondeur, G. Paulus, Astron. Astrophys. 116, 183 (1982)

    ADS  Google Scholar 

  34. N. Van Giai, H. Sagawa, Phys. Lett. B 106(5), 379 (1981)

    Article  ADS  Google Scholar 

  35. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 635, 231 (1998)

    Article  ADS  Google Scholar 

  36. A. Roggero, A. Mukherjee, F. Pederiva, Phys. Rev. C 92, 054303 (2015)

    Article  ADS  Google Scholar 

  37. J. Carlson, S. Reddy, Phys. Rev. Lett. 100, 150403 (2008)

    Article  ADS  Google Scholar 

  38. A. Bulgac, M.M. Forbes, P. Magierski, The Unitary Fermi Gas: From Monte Carlo to Density Functionals (Springer, Berlin, 2012), pp.305–373

    Book  Google Scholar 

  39. I. Vidaña, Front. Phys. 9, 170 (2021)

    Article  Google Scholar 

  40. N. Navon, S. Nascimbène, F. Chevy, C. Salomon, Science 328, 729 (2010)

    Article  ADS  Google Scholar 

  41. R. Somasundaram, C. Drischler, I. Tews, J. Margueron, Phys. Rev. C 103, 045803 (2021)

    Article  ADS  Google Scholar 

  42. P. Danielewicz, J. Lee, Nucl. Phys. A 818(1), 36 (2009)

    Article  ADS  Google Scholar 

  43. T. Carreau, F. Gulminelli, J. Margueron, Phys. Rev. C 100, 055803 (2019)

    Article  ADS  Google Scholar 

  44. A. Bohr, B.R. Mottelson, Nuclear Structure, vol. I (Addison-Wesley, Boston, 1969)

    MATH  Google Scholar 

  45. P. Vogel, B. Jonson, P. Hansen, Phys. Lett. B 139, 227 (1984)

    Article  ADS  Google Scholar 

  46. R.C. Tolman, Phys. Rev. 55, 364 (1939)

    Article  ADS  Google Scholar 

  47. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)

    Article  ADS  Google Scholar 

  48. L. Lindblom, Astrophys. J. 398, 569 (1992). https://doi.org/10.1086/171882

    Article  ADS  Google Scholar 

  49. B.P. Abbott et al., Phys. Rev. Lett. 121(16), 161101 (2018). https://doi.org/10.1103/PhysRevLett.121.161101

  50. J.W. Negele, D. Vautherin, Nucl. Phys. A 207, 298 (1973)

    Article  ADS  Google Scholar 

  51. F. Douchin, P. Haensel, J. Meyer, Nucl. Phys. A 665, 419 (2000)

    Article  ADS  Google Scholar 

  52. P. Haensel, B. Pichon, Astron. Astrophys. 283, 313 (1994)

    ADS  Google Scholar 

  53. E. Annala, T. Gorda, A. Kurkela, J. Nättilä, A. Vuorinen, Nat. Phys. 16(9), 907 (2020). https://doi.org/10.1038/s41567-020-0914-9

    Article  Google Scholar 

  54. R. Somasundaram, I. Tews, J. Margueron, Investigating Signatures of Phase Transitions in Neutron-Star Cores, arXiv:2112.08157 (nucl-th)

Download references

Acknowledgements

We thank N. Chamel for providing the nuclear configurations below saturation predicted by BSk22 to BSK25. G.G., J.M. and R.S. are supported by CNRS grant PICS-08294 VIPER (Nuclear Physics for Violent Phenomena in the Universe), the CNRS IEA-303083 BEOS project, the CNRS/IN2P3 NewMAC project, and benefit from PHAROS COST Action MP16214. S.R. is supported by Grant No. DE-FG02-00ER41132 from the Department of Energy , and the Grant No. PHY-1430152 (JINA Center for the Evolution of the Elements), and PHY-1630782 (Network for Neutrinos, Nuclear Astrophysics, and Symmetries (N3AS)) from the National Science Foundation. This work is supported by the LABEX Lyon Institute of Origins (ANR-10-LABX-0066) of the Université de Lyon for its financial support within the program Investissements d’Avenir (ANR-11-IDEX-0007) of the French government operated by the National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Margueron.

Additional information

Communicated by L. Tolos

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grams, G., Margueron, J., Somasundaram, R. et al. Confronting a set of Skyrme and \(\chi _{EFT}\) predictions for the crust of neutron stars. Eur. Phys. J. A 58, 56 (2022). https://doi.org/10.1140/epja/s10050-022-00706-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00706-w

Navigation