Skip to main content
Log in

Measurement of relative differential cross sections of the neutron-deuteron elastic scattering for neutron energy from 13 to 52 MeV

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The measurement of the relative differential cross sections of the neutron-deuteron (\(n-d)\) elastic scattering, i.e., the \(^{2}\)H(n, el)\(^{2}\)H reaction, for 12 neutron energies from 13.56 MeV to 52.48 MeV has been carried out at the Back-n White Neutron Source of the China Spallation Neutron Source (CSNS). By detection of the recoil deuterons using the light charged particle detector array (LPDA) system, the relative differential cross sections of the neutrons in the center-of-mass frame were obtained and then compared with previous measurements, the theoretical calculations performed using the Nijmegen I nucleon-nucleon potential in the Faddeev formalism, and the evaluated from libraries including the ENDF-B/VIII.0, JEFF-3.3, JENDL-4.0, CENDL-3.2, and FENDL-3.2. The present work was the first measurement relative differential cross sections of the n-d scattering for the 30 MeV \(<E_{\mathrm{n}} \le \) 60 MeV neutron energy range using a white neutron source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository [Authors’ comment: The final results of the experiment are presented in Appendix A in this paper. The origin data contains binary data of the signal waveforms from the detectors and it is too big to upload or deliver.]

References

  1. W. Glöckle et al., Phys. Rep. 274, 107 (1996)

    Article  ADS  Google Scholar 

  2. N. Kalantar-Nayestanaki et al., Rep. Prog. Phys. 75, 016301 (2011)

    Article  ADS  Google Scholar 

  3. J.C. Wang et al., Phys. Lett. B 51, 42 (1974)

    Article  ADS  Google Scholar 

  4. M.I. Ojaruega, Fast Neutron Measurements Using Deuterated Liquid Scintillators. Ph.D. Thesis. The University of Michigan (2009)

  5. EXFOR, https://www-nds.iaea.org/exfor/exfor.htm/

  6. R.K. Adair et al., Phys. Rev. 89, 1165 (1953)

    Article  ADS  Google Scholar 

  7. W.D. Allen et al., Proc. Phys. Soc. Sect. A 68, 650 (1955)

    Article  ADS  Google Scholar 

  8. L. Amtén et al., Phys. Scr. 15, 311 (1977)

    Article  ADS  Google Scholar 

  9. J. Balewski et al., Nucl. Phys. A 581, 131 (1995)

    Article  ADS  Google Scholar 

  10. A.C. Berick et al., Phys. Rev. 174, 1105 (1968)

    Article  ADS  Google Scholar 

  11. D. Blanc et al., J. Phys. Colloq. 27, C1 (1966)

    ADS  Google Scholar 

  12. B.E. Bonner et al., Nucl. Phys. A 128, 183 (1969)

    Article  ADS  Google Scholar 

  13. B.E. Bonner et al., Phys. Rev. C 17, 671 (1978)

    Article  ADS  Google Scholar 

  14. F.P. Brady et al., Phys. Rev. C 9, 1784 (1974)

    Article  ADS  Google Scholar 

  15. T.W. Burrows, Phys. Rev. C 8, 1173 (1973)

    Article  ADS  Google Scholar 

  16. P. Chatelain et al., Nucl. Phys. A 319, 71 (1979)

    Article  ADS  Google Scholar 

  17. X.H. Chen et al., Phys. Rev. C 32, 1767 (1985)

    Article  ADS  Google Scholar 

  18. A.J. Elwyn et al., Phys. Rev. 128, 779 (1962)

    Article  ADS  Google Scholar 

  19. E. Ertan et al., Phys. Rev. C 87, 034003 (2013)

    Article  ADS  Google Scholar 

  20. J.A. Frenje et al., Phys. Rev. Lett. 107, 122502 (2011)

    Article  ADS  Google Scholar 

  21. M. Gouanère et al., Nucl. Phys. A 144, 607 (1970)

    Article  ADS  Google Scholar 

  22. V.J. Howard et al., Nucl. Phys. A 218, 140 (1974)

    Article  ADS  Google Scholar 

  23. C.R. Howell et al., Few Body Syst. 16, 127 (1994)

    Article  ADS  Google Scholar 

  24. V. Kulkarni et al., Nucl. Phys. A 367, 157 (1981)

    Article  ADS  Google Scholar 

  25. Y. Maeda et al., Phys. Rev. C 76, 014004 (2007)

    Article  ADS  Google Scholar 

  26. R.C. Malone et al., Phys. Rev. C 101, 034002 (2020)

    Article  ADS  Google Scholar 

  27. P. Mermod et al., Phys. Lett. B 597, 243 (2004)

    Article  ADS  Google Scholar 

  28. P. Mermod et al., Phys. Rev. C 72, 061002 (2005)

    Article  ADS  Google Scholar 

  29. J.N. Palmieri, Nucl. Phys. A 188, 72 (1972)

    Article  ADS  Google Scholar 

  30. E. Pirovano et al., Phys. Rev. C 95, 024601 (2017)

    Article  ADS  Google Scholar 

  31. J.L. Romero et al., Phys. Rev. C 2, 2134 (1970)

    Article  ADS  Google Scholar 

  32. J. Sanada et al., Phys. Rev. 80, 750 (1950)

    Article  ADS  Google Scholar 

  33. P. Schwarz et al., Nucl. Phys. A 398, 1 (1983)

    Article  ADS  Google Scholar 

  34. J.D. Seagrave, Phys. Rev. 97, 757 (1955)

    Article  ADS  Google Scholar 

  35. J.D. Seagrave et al., Phys. Rev. 105, 1816 (1957)

    Article  ADS  Google Scholar 

  36. J.D. Seagrave et al., Ann. Phys. 74, 250 (1972)

    Article  ADS  Google Scholar 

  37. G. Vedrenne et al., J. Phys. France 24, 801 (1963)

    Article  Google Scholar 

  38. J.C.Y. Wang, Dissert. Abstr. B (Sciences) 35, 3511 (1974)

    Google Scholar 

  39. E. Wantuch, Phys. Rev. 84, 169 (1951)

    Article  ADS  Google Scholar 

  40. J.R. Cooper et al., Bull. Am. Phys. Soc. 15, 1328 (1970)

    Google Scholar 

  41. B.L. Youtz, U.C. Lawrence Radiat. Lab. Rep. No. UCRL-2307 (1953)

  42. G. Shen et al., Chin. J. Nucl. Phys. 12, 241 (1990)

    Google Scholar 

  43. S. Shirato et al., in Few Particle Problems, ed. by I. Slaus, S.A. Moszkowski, R.P. Haddock, and W. T. H. van Oers (Elsevier, 1972), p. 472

  44. S.-I. Higuchi et al., Nucl. Phys. A 384, 51 (1982)

    Article  ADS  Google Scholar 

  45. S. Shirato et al., Nucl. Phys. A 120, 387 (1968)

    Article  ADS  Google Scholar 

  46. S. Messelt, Nucl. Phys. 48, 512 (1963)

    Article  Google Scholar 

  47. J. Weber, Helv. Phys. Acta 54, 547 (1982)

    Google Scholar 

  48. I. Basar, Conf. Light Nuclei Symp. Brela II, 867 (1969)

  49. J. Tang et al., Chin. Phys. C 45, 062001 (2021)

    Article  ADS  Google Scholar 

  50. Q. An et al., JINST 12, 07022 (2017)

    Google Scholar 

  51. Y. Chen et al., Eur. Phys. J. A 55, 115 (2019)

    Article  ADS  Google Scholar 

  52. B. Qi et al., Nucl. Instrum. Methods Phys. Res. A 957, 163407 (2020)

    Article  Google Scholar 

  53. L.Y. Zhang et al., Appl. Radiat. Isot. 132, 212 (2018)

    Article  Google Scholar 

  54. H. Bai et al., Chin. Phys. C 44, 014003 (2020)

    Article  ADS  Google Scholar 

  55. H. Jiang et al., Eur. Phys. J. A 57, 6 (2021)

    Article  ADS  Google Scholar 

  56. R. Fan et al., Nucl. Instrum. Methods Phys. Res. A 981, 164343 (2020)

    Article  Google Scholar 

  57. W. Jiang et al., Nucl. Instrum. Methods Phys. Res. A 973, 164126 (2020)

  58. Z. Cui et al., EPJ Web Conf. 239, 01039 (2020)

  59. H. Bing et al., Chin. Phys. C 41, 016104 (2017)

    Article  ADS  Google Scholar 

  60. O.B. Tarasov et al., Nucl. Instrum. Methods Phys. Res. B 266, 4657 (2008)

    Article  ADS  Google Scholar 

  61. V.N. Pomerantsev et al., Phys. Rev. C 79, 034001 (2009)

  62. O.A. Rubtsova et al., Phys. Rev. C 79, 064602 (2009)

    Article  ADS  Google Scholar 

  63. O.A. Rubtsova et al., Ann. Phys. 360, 613 (2015)

    Article  MathSciNet  Google Scholar 

  64. V.G.J. Stoks et al., Phys. Rev. C 49, 2950 (1994)

    Article  ADS  Google Scholar 

  65. ENDF, https://www-nds.iaea.org/exfor/endf.htm/

  66. K. Shibata et al., J. Nucl. Sci. Technol. 48, 1 (2011)

    Article  Google Scholar 

  67. Z. Ge et al., EPJ Web Conf. 239, 09001 (2020)

    Article  Google Scholar 

  68. FENDL, https://www-nds.iaea.org/fendl/

  69. A.J.M. Plompen et al., Eur. Phys. J. A 56, 181 (2020)

    Article  ADS  Google Scholar 

  70. D.A. Brown et al., Nucl. Data Sheets 148, 1 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the operating crew of the CSNS Back-n white neutron source. They would also like to thank Dr. Qiwen Fan from China Institute of Atomic Energy for preparing the \(\hbox {CD}_{{2}}\) sample. Dr. Elisa Pirovano from Physikalisch-Technische Bundesanstalt and Dr. Ronald Malone from the Lawrance Livermore National Laboratory are appreciated for valuable discussions. This work is supported in part by the National Natural Science Foundation of China under grant No. 11775006 and No. U2067205 and by the National Key R&D Program of China under grant No. 2016YFA0401604.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Guohui Zhang or Ruirui Fan.

Additional information

Communicated by Alessia Di Pietro

Appendix A

Appendix A

See Table 3.

Table 3 Results of the relative differential cross sections of the n-d scattering measured in the present work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Jiang, H., Jiang, W. et al. Measurement of relative differential cross sections of the neutron-deuteron elastic scattering for neutron energy from 13 to 52 MeV. Eur. Phys. J. A 57, 310 (2021). https://doi.org/10.1140/epja/s10050-021-00610-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00610-9

Navigation