Skip to main content
Log in

Dynamical diquarks in the \({\varvec{\gamma ^{(*)} p\rightarrow N(1535)\frac{1}{2}^-}}\) transition

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The \(\gamma ^{(*)}+p \rightarrow N(1535) \tfrac{1}{2}^-\) transition is studied using a symmetry-preserving regularisation of a vector\(\,\otimes \,\)vector contact interaction (SCI). The framework employs a Poincaré-covariant Faddeev equation to describe the initial and final state baryons as quark+diquark composites, wherein the diquark correlations are fully dynamical, interacting with the photon as allowed by their quantum numbers and continually engaging in breakup and recombination as required by the Faddeev kernel. The presence of such correlations owes largely to the mechanisms responsible for the emergence of hadron mass; and whereas the nucleon Faddeev amplitude is dominated by scalar and axial-vector diquark correlations, the amplitude of its parity partner, the \(N(1535) \tfrac{1}{2}^-\), also contains sizeable pseudoscalar and vector diquark components. It is found that the \(\gamma ^{(*)}+p \rightarrow N(1535) \tfrac{1}{2}^-\) helicity amplitudes and related Dirac and Pauli form factors are keenly sensitive to the relative strengths of these diquark components in the baryon amplitudes, indicating that such resonance electrocouplings possess great sensitivity to baryon structural details. Whilst SCI analyses have their limitations, they also have the virtue of algebraic simplicity and a proven ability to reveal insights that can be used to inform more sophisticated studies in frameworks with closer ties to quantum chromodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are represented in this published article.].

References

  1. I.G. Aznauryan et al., Studies of nucleon resonance structure in exclusive meson electroproduction. Int. J. Mod. Phys. E 22, 1330015 (2013)

    Article  ADS  Google Scholar 

  2. S.J. Brodsky et al., Strong QCD from Hadron structure experiments. Intern. J. Mod. Phys. E 124, 2030006 (2020)

    Article  Google Scholar 

  3. D. Carman, K. Joo, V. Mokeev, Strong QCD insights from excited nucleon structure studies with CLAS and CLAS12. Few Body Syst. 61, 29 (2020)

    Article  ADS  Google Scholar 

  4. M.Y. Barabanov et al., Diquark correlations in hadron physics: origin, impact and evidence. Prog. Part. Nucl. Phys. 116, 103835 (2021)

    Article  Google Scholar 

  5. X. Chen, F.-K. Guo, C.D. Roberts, R. Wang, Selected science opportunities for the EicC. Few Body Syst. 61, 43 (2020)

    Article  ADS  Google Scholar 

  6. J. Arrington et al., Revealing the structure of light pseudoscalar mesons at the electron–ion collider. J. Phys. G 48, 075106 (2021)

    Article  ADS  Google Scholar 

  7. L.D. Roper, Evidence for a P-11 pion-nucleon resonance at 556 MeV. Phys. Rev. Lett. 12, 340–342 (1964)

    Article  ADS  Google Scholar 

  8. P. Bareyre et al., Pion-nucleon interactions between \({{\cal{T}}}_{{\rm lab}} = 300\) and \({{\cal{T}}}_{{\rm lab}}\) = 700 MeV. Phys. Lett. 8, 137–141 (1964)

    Article  ADS  Google Scholar 

  9. P. Auvil, C. Lovelace, A. Donnachie, A. Lea, Pion-nucleon phase shifts and resonances. Phys. Lett. 12, 76–80 (1964)

    Article  ADS  Google Scholar 

  10. S.L. Adelman, Evidence for an \({N}^{*}\) resonance at 1425 MeV. Phys. Rev. Lett. 13, 555–557 (1964)

    Article  ADS  Google Scholar 

  11. L.D. Roper, R.M. Wright, B.T. Feld, Energy-dependent pion-nucleon phase-shift analysis. Phys. Rev. 138, B190–B210 (1965)

    Article  ADS  Google Scholar 

  12. I.G. Aznauryan et al., Phys. Rev. C 78, 045209 (2008)

    Article  ADS  Google Scholar 

  13. I. Aznauryan et al., Electroexcitation of nucleon resonances from CLAS data on single pion electroproduction. Phys. Rev. C 80, 055203 (2009)

    Article  ADS  Google Scholar 

  14. I. Aznauryan, V. Burkert, Electroexcitation of nucleon resonances. Prog. Part. Nucl. Phys. 67, 1–54 (2012)

    Article  ADS  Google Scholar 

  15. V.I. Mokeev et al., Experimental Study of the \(P_{11}(1440)\) and \(D_{13}(1520)\) resonances from CLAS data on \(ep \rightarrow e^{\prime }\pi ^{+} \pi ^{-} p^{\prime }\). Phys. Rev. C 86, 035203 (2012)

    Article  ADS  Google Scholar 

  16. V.I. Mokeev et al., New results from the studies of the \(N(1440)1/2^+\), \(N(1520)3/2^-\), and \(\Delta (1620)1/2^-\) Resonances in exclusive \(ep \rightarrow e^{\prime }p^{\prime } \pi ^+ \pi ^-\) electroproduction with the CLAS detector. Phys. Rev. C 93, 025206 (2016)

    Article  ADS  Google Scholar 

  17. V.D. Burkert, C.D. Roberts, Colloquium: Roper resonance: toward a solution to the fifty-year puzzle. Rev. Mod. Phys. 91, 011003 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Sun et al., Roper state from overlap fermions. Phys. Rev. D 101, 054511 (2020)

    Article  ADS  Google Scholar 

  19. N. Isgur, G. Karl, P wave Baryons in the quark model. Phys. Rev. D 18, 4187 (1978)

    Article  ADS  Google Scholar 

  20. S. Weinberg, Precise relations between the spectra of vector and axial vector mesons. Phys. Rev. Lett. 18, 507–509 (1967)

    Article  ADS  Google Scholar 

  21. C.D. Roberts, Empirical consequences of emergent mass. Symmetry 12, 1468 (2020)

    Article  Google Scholar 

  22. C.D. Roberts, S.M. Schmidt, Reflections upon the emergence of hadronic mass. Eur. Phys. J. ST 229(22–23), 3319–3340 (2020)

    Article  Google Scholar 

  23. L. Chang, C.D. Roberts, Tracing masses of ground-state light-quark mesons. Phys. Rev. C 85, 052201(R) (2012)

    Article  ADS  Google Scholar 

  24. G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, C.S. Fischer, Baryons as relativistic three-quark bound states. Prog. Part. Nucl. Phys. 91, 1–100 (2016)

    Article  ADS  Google Scholar 

  25. S.-X. Qin, C.D. Roberts, Resolving the Bethe-Salpeter kernel. Chin. Phys. Lett. Express 38(7), 071201 (2021)

    Article  ADS  Google Scholar 

  26. F. Gao, L. Chang, Y.-X. Liu, C.D. Roberts, S.M. Schmidt, Parton distribution amplitudes of light vector mesons. Phys. Rev. D 90, 014011 (2014)

    Article  ADS  Google Scholar 

  27. R.T. Cahill, C.D. Roberts, J. Praschifka, Baryon structure and QCD. Austral. J. Phys. 42, 129–145 (1989)

    Article  ADS  Google Scholar 

  28. C.J. Burden, R.T. Cahill, J. Praschifka, Baryon structure and QCD: nucleon calculations. Austral. J. Phys. 42, 147–159 (1989)

    Article  ADS  Google Scholar 

  29. H. Reinhardt, Hadronization of quark flavor dynamics. Phys. Lett. B 244, 316–326 (1990)

    Article  ADS  Google Scholar 

  30. G.V. Efimov, M.A. Ivanov, V.E. Lyubovitskij, Quark-diquark approximation of the three quark structure of baryons in the quark confinement model. Z. Phys. C 47, 583–594 (1990)

    Article  ADS  Google Scholar 

  31. C. Chen, B. El-Bennich, C.D. Roberts, S.M. Schmidt, J. Segovia, S. Wan, Structure of the nucleon’s low-lying excitations. Phys. Rev. D 97, 034016 (2018)

    Article  ADS  Google Scholar 

  32. Y. Lu, C. Chen, C.D. Roberts, J. Segovia, S.-S. Xu, H.-S. Zong, Parity partners in the baryon resonance spectrum. Phys. Rev. C 96, 015208 (2017)

    Article  ADS  Google Scholar 

  33. P.-L. Yin, Z.-F. Cui, C.D. Roberts, J. Segovia, Masses of positive- and negative-parity hadron ground-states, including those with heavy quarks. Eur. Phys. J. C 81(4), 327 (2021)

    Article  ADS  Google Scholar 

  34. G. Eichmann, C.S. Fischer, H. Sanchis-Alepuz, Light baryons and their excitations. Phys. Rev. D 94, 094033 (2016)

    Article  ADS  Google Scholar 

  35. M. Dugger et al., \(\pi ^+\) photoproduction on the proton for photon energies from 0.725 to 2.875 GeV. Phys. Rev. C 79, 065206 (2009)

    Article  ADS  Google Scholar 

  36. C.S. Armstrong et al., Electroproduction of the \(S_{11}(1535)\) resonance at high momentum transfer. Phys. Rev. D 60, 052004 (1999)

    Article  ADS  Google Scholar 

  37. R. Thompson et al., The \(e p \rightarrow e^\prime p \eta \) reaction at and above the \(S_{11}(1535)\) baryon resonance. Phys. Rev. Lett. 86, 1702–1706 (2001)

    Article  ADS  Google Scholar 

  38. I. Aznauryan, Resonance contributions to eta photoproduction on protons found using dispersion relations and an isobar model. Phys. Rev. C 68, 065204 (2003)

    Article  ADS  Google Scholar 

  39. H. Denizli et al., \(Q^2\) dependence of the \(S_{11}(1535)\) photocoupling and evidence for a P-wave resonance in \(\eta \) electroproduction. Phys. Rev. C 76, 015204 (2007)

    Article  ADS  Google Scholar 

  40. G. Eichmann, G. Ramalho, Nucleon resonances in Compton scattering. Phys. Rev. D 98(9), 093007 (2018)

    Article  ADS  Google Scholar 

  41. S. Capstick, W. Roberts, Quark models of baryon masses and decays. Prog. Part. Nucl. Phys. 45, S241–S331 (2000)

    Article  ADS  Google Scholar 

  42. V. Crede, W. Roberts, Progress towards understanding baryon resonances. Rept. Prog. Phys. 76, 076301 (2013)

    Article  ADS  Google Scholar 

  43. M.M. Giannini, E. Santopinto, The hypercentral Constituent Quark Model and its application to baryon properties. Chin. J. Phys. 53, 020301 (2015)

    Google Scholar 

  44. L.X. Gutiérrez-Guerrero, A. Bashir, I.C. Cloet, C.D. Roberts, Pion form factor from a contact interaction. Phys. Rev. C 81, 065202 (2010)

    Article  ADS  Google Scholar 

  45. D.J. Wilson, I.C. Cloet, L. Chang, C.D. Roberts, Nucleon and Roper electromagnetic elastic and transition form factors. Phys. Rev. C 85, 025205 (2012)

    Article  ADS  Google Scholar 

  46. J. Segovia, B. El-Bennich, E. Rojas, I.C. Cloet, C.D. Roberts, S.-S. Xu, H.-S. Zong, Completing the picture of the Roper resonance. Phys. Rev. Lett. 115(17), 171801 (2015)

    Article  ADS  Google Scholar 

  47. D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, Bridging a gap between continuum-QCD and ab initio predictions of hadron observables. Phys. Lett. B 742, 183–188 (2015)

    Article  ADS  Google Scholar 

  48. A. Deur, S.J. Brodsky, G.F. de Teramond, The QCD running coupling. Prog. Part. Nucl. Phys. 90, 1–74 (2016)

    Article  ADS  Google Scholar 

  49. Z.-F. Cui, J.-L. Zhang, D. Binosi, F. de Soto, C. Mezrag, J. Papavassiliou, C.D. Roberts, J. Rodríguez-Quintero, J. Segovia, S. Zafeiropoulos, Effective charge from lattice QCD. Chin. Phys. C 44, 083102 (2020)

    Article  ADS  Google Scholar 

  50. R.L.S. Farias, G. Dallabona, G. Krein, O.A. Battistel, Extension of the Nambu-Jona-Lasinio model at high densities and temperatures using an implicit regularization scheme. Phys. Rev. C 77, 065201 (2008)

    Article  ADS  Google Scholar 

  51. H.L.L. Roberts, C.D. Roberts, A. Bashir, L.X. Gutiérrez-Guerrero, P.C. Tandy, Abelian anomaly and neutral pion production. Phys. Rev. C 82, 065202 (2010)

    Article  ADS  Google Scholar 

  52. H.L.L. Roberts, L. Chang, I.C. Cloet, C.D. Roberts, Masses of ground and excited-state hadrons. Few Body Syst. 51, 1–25 (2011)

    Article  ADS  Google Scholar 

  53. H.L.L. Roberts, A. Bashir, L.X. Gutiérrez-Guerrero, C.D. Roberts, D.J. Wilson, \(\pi \)- and \(\rho \)-mesons, and their diquark partners, from a contact interaction. Phys. Rev. C 83, 065206 (2011)

    Article  ADS  Google Scholar 

  54. C. Chen, L. Chang, C.D. Roberts, S.-L. Wan, D.J. Wilson, Spectrum of hadrons with strangeness. Few Body Syst. 53, 293–326 (2012)

    Article  ADS  Google Scholar 

  55. M. Pitschmann, C.-Y. Seng, M.J. Ramsey-Musolf, C.D. Roberts, S.M. Schmidt, D.J. Wilson, Electric dipole moment of the rho-meson. Phys. Rev. C 87, 015205 (2013)

    Article  ADS  Google Scholar 

  56. J. Segovia, C. Chen, I.C. Cloet, C.D. Roberts, S.M. Schmidt, S.-L. Wan, Elastic and transition form factors of the \(\Delta (1232)\). Few Body Syst. 55, 1–33 (2014)

    Article  ADS  Google Scholar 

  57. S.-S. Xu, C. Chen, I.C. Cloet, C.D. Roberts, J. Segovia, H.-S. Zong, Contact-interaction Faddeev equation and inter alia, proton tensor charges. Phys. Rev. D 92, 114034 (2015)

    Article  ADS  Google Scholar 

  58. M.A. Bedolla, J.J. Cobos-Martínez, A. Bashir, Charmonia in a contact interaction. Phys. Rev. D 92, 054031 (2015)

    Article  ADS  Google Scholar 

  59. M.A. Bedolla, K. Raya, J.J. Cobos-Martínez, A. Bashir, \(\eta _c\) elastic and transition form factors: contact interaction and algebraic model. Phys. Rev. D 93, 094025 (2016)

    Article  ADS  Google Scholar 

  60. F.E. Serna, G. Krein, Charmed mesons at finite temperature and chemical potential. EPJ Web Conf. 137, 13015 (2017)

    Article  Google Scholar 

  61. Z.-N. Xu, Z.-F. Cui, C.D. Roberts, C.Xu, Heavy+light pseudoscalar meson semileptonic transitions, (2021). arXiv:2103.15964 [hep-ph]

  62. D. Ebert, T. Feldmann, H. Reinhardt, Extended NJL model for light and heavy mesons without \(q {\bar{q}}\) thresholds. Phys. Lett. B 388, 154–160 (1996)

    Article  ADS  Google Scholar 

  63. D. Binosi, L. Chang, S.-X. Qin, J. Papavassiliou, C.D. Roberts, Symmetry preserving truncations of the gap and Bethe-Salpeter equations. Phys. Rev. D 93, 096010 (2016)

    Article  ADS  Google Scholar 

  64. R.T. Cahill, Hadronization of QCD. Austral. J. Phys. 42, 171–186 (1989)

    Article  ADS  Google Scholar 

  65. M.S. Bhagwat, A. Höll, A. Krassnigg, C.D. Roberts, P.C. Tandy, Aspects and consequences of a dressed-quark-gluon vertex. Phys. Rev. C 70, 035205 (2004)

    Article  ADS  Google Scholar 

  66. R.T. Cahill, C.D. Roberts, J. Praschifka, Calculation of diquark masses in QCD. Phys. Rev. D 36, 2804 (1987)

    Article  ADS  Google Scholar 

  67. M. Anselmino, E. Predazzi, S. Ekelin, S. Fredriksson, D.B. Lichtenberg, Diquarks. Rev. Mod. Phys. 65, 1199–1234 (1993)

    Article  ADS  Google Scholar 

  68. I. Aznauryan, V. Burkert, T.-S. Lee, V. Mokeev, Results from the N* program at JLab. J. Phys. Conf. Ser. 299, 012008 (2011)

    Article  Google Scholar 

  69. V.D. Burkert, T.S.H. Lee, Electromagnetic meson production in the nucleon resonance region. Int. J. Mod. Phys. E 13, 1035–1112 (2004)

    Article  ADS  Google Scholar 

  70. R.G. Edwards, J.J. Dudek, D.G. Richards, S.J. Wallace, Excited state baryon spectroscopy from lattice QCD. Phys. Rev. D 84, 074508 (2011)

    Article  ADS  Google Scholar 

  71. C.D. Roberts, R.J. Holt, S.M. Schmidt, Nucleon spin structure at very high \(x\). Phys. Lett. B 727, 249–254 (2013)

    Article  ADS  Google Scholar 

  72. J. Segovia, C.D. Roberts, S.M. Schmidt, Understanding the nucleon as a Borromean bound-state. Phys. Lett. B 750, 100–106 (2015)

    Article  ADS  Google Scholar 

  73. J. Segovia, C.D. Roberts, Dissecting nucleon transition electromagnetic form factors. Phys. Rev. C 94, 042201(R) (2016)

    Article  ADS  Google Scholar 

  74. Z.-F. Cui, C. Chen, D. Binosi, F. de Soto, C.D. Roberts, J. Rodríguez-Quintero, S.M. Schmidt, J. Segovia, Nucleon elastic form factors at accessible large spacelike momenta. Phys. Rev. D 102, 014043 (2020)

    Article  ADS  Google Scholar 

  75. A. Buck, R. Alkofer, H. Reinhardt, Baryons as bound states of diquarks and quarks in the Nambu-Jona-Lasinio model. Phys. Lett. B 286, 29–35 (1992)

    Article  ADS  Google Scholar 

  76. M.B. Hecht, M. Oettel, C.D. Roberts, S.M. Schmidt, P.C. Tandy, A.W. Thomas, Nucleon mass and pion loops. Phys. Rev. C 65, 055204 (2002)

    Article  ADS  Google Scholar 

  77. G. Eichmann, R. Alkofer, I.C. Cloet, A. Krassnigg, C.D. Roberts, Perspective on rainbow-ladder truncation. Phys. Rev. C 77, 042202(R) (2008)

    Article  ADS  Google Scholar 

  78. G. Eichmann, I.C. Cloet, R. Alkofer, A. Krassnigg, C.D. Roberts, Toward unifying the description of meson and baryon properties. Phys. Rev. C 79, 012202(R) (2009)

    Article  ADS  Google Scholar 

  79. N. Suzuki, B. Julia-Diaz, H. Kamano, T.S.H. Lee, A. Matsuyama, T. Sato, Disentangling the dynamical origin of P-11 nucleon resonances. Phys. Rev. Lett. 104, 042302 (2010)

    Article  ADS  Google Scholar 

  80. H. Kamano, S.X. Nakamura, T.S.H. Lee, T. Sato, Nucleon resonances within a dynamical coupled-channels model of \(\pi N\) and \(\gamma N\) reactions. Phys. Rev. C 88, 032509 (2013)

    Article  Google Scholar 

  81. J. Segovia, I.C. Cloet, C.D. Roberts, S.M. Schmidt, Nucleon and \(\Delta \) elastic and transition form factors. Few Body Syst. 55, 1185–1222 (2014)

    Article  ADS  Google Scholar 

  82. P. Zyla et al., Review of particle physics. PTEP 2020, 083C01 (2020)

    Google Scholar 

  83. V.M. Braun et al., Electroproduction of the N*(1535) resonance at large momentum transfer. Phys. Rev. Lett. 103, 072001 (2009)

    Article  ADS  Google Scholar 

  84. L. Chang, Y.-X. Liu, C.D. Roberts, Dressed-quark anomalous magnetic moments. Phys. Rev. Lett. 106, 072001 (2011)

    Article  ADS  Google Scholar 

  85. Z. Xing, K. Raya, L. Chang, Quark anomalous magnetic moment and its effects on the \(\rho \) meson properties (2021), arXiv:2107.05158 [nucl-th]

  86. J.J. Dudek, R. Edwards, C.E. Thomas, Exotic and excited-state radiative transitions in charmonium from lattice QCD. Phys. Rev. D 79, 094504 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful for: input from D. J. Wilson in the early stages of this project; and constructive comments from V. Mokeev. Work supported by: National Natural Science Foundation of China (under Grant no. 12135007, 11805097); Jiangsu Provincial Natural Science Foundation of China (under grant no. BK20180323); Coordinación de la Investigación Científica (CIC) of the University of Michoacan and CONACyT, Mexico, through grant nos. 4.10 and CB2014-22117, respectively; Ministerio Español de Ciencia e Innovación, grant no. PID2019-107844GB-C22; and Junta de Andalucía, contract nos. P18-FR-5057 and Operativo FEDER Andalucía 2014-2020 UHU-1264517.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. D. Roberts.

Additional information

Communicated by David Blaschke.

Appendices

Appendix A: Electromagnetic interaction vertices

To calculate the baryon elastic and transition currents considered herein, the vertices in Fig. 2 must be specified, i.e. the momentum-dependent photon+quark and photon+diquark interaction form factors.

1.1 Appendix A.1: Photon+quark vertex – S1

The primary element throughout is the dressed photon+quark vertex, which takes the following form when using the SCI:

$$\begin{aligned} \varGamma _\mu ^\gamma (Q) = \frac{Q_\mu Q_\nu }{Q^2} \gamma _\nu + \varGamma _\mu ^{\mathrm{T}}(Q)\,, \end{aligned}$$
(A.1)

with \(Q=p_f-p_i\), where \(p_{f,i}\) are the outgoing, incoming quark momenta, , , and [45, 51]:

(A.2)

Here [51]

$$\begin{aligned} P_{\mathrm{T}}(Q^2)&= \frac{1}{1+K_\gamma (Q^2)}\,, \end{aligned}$$
(A.3a)
$$\begin{aligned} K_\gamma (Q^2)&= \frac{4\alpha _{\mathrm{IR}} Q^2}{3\pi m_G^2} \int _0^1 d\alpha \,\alpha (1-\alpha )\,\bar{\mathcal{C}}_1(\omega (\alpha ,\varDelta ^2)), \end{aligned}$$
(A.3b)

where the mass-scale \(m_G=0.5\,\)GeV when \(\alpha _{IR}\) has the value in Table 1, \(\omega (\alpha ,Q^2) = M^2 + \alpha (1-\alpha ) Q^2\),

$$\begin{aligned} \overline{{\mathcal {C}}}_1(\sigma )&= \varGamma (0,\sigma \tau _{\mathrm{ir}}^2) - \varGamma (0,\sigma \tau _{\mathrm{uv}}^2), \end{aligned}$$
(A.4)

with \(\varGamma (\alpha ,y)\) being the incomplete gamma-function. The dressing function in Eq. (A.3) is depicted in Fig. 9.

Fig. 9
figure 9

Photon+quark vertex dressing function in Eq. (A.3). As in any symmetry preserving treatment of photon+quark interactions, \(P_{\mathrm{T}}(Q^2)\) exhibits a pole at \(Q^2= -m_\rho ^2\). Moreover, \(P_{\mathrm{T}}(Q^2 = 0) = 1 = P_{\mathrm{T}}(Q^2 \rightarrow \infty )\)

The second term in Eq. (A.2) expresses the fact that owing to DCSB a dressed light-quark has a large anomalous electromagnetic moment (DqAMM) [84, 85]. With \(\zeta =1/3\), we reproduce all form factor results in Ref.  [45]. Our value for \(\zeta \) is smaller than that used therein because Ref.  [45] omitted this contribution when computing the \(0^+ \leftrightarrow 1^+\) diquark transition form factor. To illustrate the sensitivity of calculated observables to the DqAMM, we typically show results obtained with \(\zeta \in [0,0.5]\), highlighting those obtained using \(\zeta =1/3\).

1.2 Appendix A.2: Elastic photon+diquark vertices – S2

Using the SCI, all photon+diquark vertices can be calculated following the pattern described in Ref.  [53]. Herein, therefore, we will only present the results. To begin, the elastic \(\gamma \, 0^{\pm } \rightarrow 0^\pm \) vertices take the following form (\(2K=p_f+p_i\)):

$$\begin{aligned} \varLambda _\mu ^\pm (p_f,p_i) = K_\mu F^{0^\pm }(Q^2)\,. \end{aligned}$$
(A.5)

The scalar functions can be computed; and on the domain \(Q^2\in [0,10\,\mathrm{GeV}^2]\) they are accurately interpolated using the following [1, 2] Padé approximant:

$$\begin{aligned} F^{0^\pm }(s=Q^2) = \frac{a_0^\pm + a_1^\pm s }{1+b_1^\pm s + b_2^\pm s^2 }, \end{aligned}$$
(A.6)

with the interpolation coefficients listed in Table 3. The results are drawn in Fig. 10.

Table 3 Interpolation coefficients to be used in Eq. (A.6) for each respective elastic photon+diquark form factor. All form factors are dimensionless, so each coefficient has the mass-dimension required to cancel that of the associated \(Q^2\,(\mathrm{GeV}^2)\) factor
Fig. 10
figure 10

Elastic photon+(pseudo)scalar-diquark form factors: \(F^+(Q^2)\) – solid red curve; and \(F^-(Q^2)\) – dashed blue curve. There is practically no sensitivity to the DqAMM in these \(J=0\) systems

Elastic electromagnetic form factors involving \(1^\pm \) diquark correlations can be expressed as follows:

$$\begin{aligned} \varLambda _{\mu \alpha \beta }^\pm (p_i,p_f) = \sum _{j=1}^3 T_{\mu \alpha \beta }^{(j)}(K,Q)\, F_j^\pm (Q^2), \end{aligned}$$
(A.7)

where

(A.8)
(A.9)
(A.10)

Our calculated results are accurately interpolated using a [1, 2] Padé approximant of the form in Eq. (A.6) with the coefficients in Table 3. Depicted in Fig. 11, the form factors are similar to those of a vector meson [53] and, as in that case, the magnetic form factor \(G_M = -F_2\). The DqAMM has an observable impact on the elastic electromagnetic form factors of these \(J=1\) systems.

Fig. 11
figure 11

Upper panel – A. Elastic photon+pseudovector-diquark form factors: \(F_1(Q^2)\) – solid red; \(F_2(Q^2)\) – dashed blue; and \(F_3(Q^2)\) – dot-dashed green. In each case, the shaded areas show the response to variation of the DqAMM strength, \(\zeta \in [0,0.5]\), around the highlighted \(\zeta =1/3\) curves. Lower panel – B. Elastic photon+vector-diquark form factors with legend as in A

1.3 Appendix A.3: Photon-induced diquark transition vertices – S3

Diagram S3 in Fig. 2 represents five electromagnetically induced diquark transition vertices: scalar\(\,\leftrightarrow \,\)pseudovector; pseudoscalar\(\,\leftrightarrow \,\)vector; scalar\(\,\leftrightarrow \,\)vector; pseudoscalar\(\,\leftrightarrow \,\)pseudovector; and pseudovector\(\,\leftrightarrow \,\)vector.

The first two involve like-parity diquarks in the initial and final states and have the following simple structure:

$$\begin{aligned} \varLambda _{\mu \rho }^{1^\pm 0^\pm }(p_f,p_i) = \frac{1}{m_1^\pm }\epsilon _{\mu \rho \alpha \beta } Q_\alpha p_{f\beta } F^\pm (Q^2). \end{aligned}$$
(A.11)

Our calculated results are accurately interpolated by a [1, 2] Padé approximant in the form of Eq. (A.6) with the coefficients given in Table 4. They are drawn in Fig. 12. Plainly, the DqAMM has a noticeable impact on both vertices and the \(\gamma 0^- \rightarrow 1^-\) transition form factor is typically larger in magnitude than that describing \(\gamma 0^+ \rightarrow 1^+\). The latter feature has little impact, however, because the nucleon contains practically no negative-parity diquarks.

Fig. 12
figure 12

Form factors for photon induced transition between: scalar-diquark and pseudovector-diquark, \(\gamma ^{(*)} 0^+ \rightarrow 1^+\) – solid red curve; and pseudoscalar-diquark and vector-diquark, \(\gamma ^{(*)} 0^- \rightarrow 1^-\) – dashed blue curve. In each case, the shaded areas show the response to variation of the DqAMM strength, \(\zeta \in [0,0.5]\), around the highlighted \(\zeta =1/3\) curves

Table 4 Interpolation coefficients to be used in Eq. (A.6) for each photon-induced diquark transition form factor. There are two exceptions: [2, 3] Padé approximants are required to accurately represent the \(\gamma ^{(*)} 1^+ \rightarrow 0^-\), \(\gamma ^{(*)} 0^+ \rightarrow 1^-\) transitions. In each of these cases there are two additional coefficients for both of the functions involved, Eq. (A.12). \(\gamma ^{(*)} 1^+ \rightarrow 0^-\): \(a_2 = 0.267\), \(b_3 = 0.029\) (\(F_1\)); and \(a_2 = -0.019\), \(b_3 = 0.348\) (\(F_2\)). \(\gamma ^{(*)} 1^- \rightarrow 0^+\): \(a_2 = 0.227\), \(b_3 = 1.852\) (\(F_1\)); and \(a_2 = 0.051\), \(b_3 = 2.449\) (\(F_2\)). All form factors are dimensionless, so each coefficient has the mass-dimension required to cancel that of the associated \(Q^2\,(\mathrm{GeV}^2)\) factor

The next two transitions involve opposite parity diquarks: \(\gamma 1^\pm \rightarrow 0^\mp \). They are characterised by two form factors [86]:

$$\begin{aligned} \varLambda _{\mu \rho }^{\mp \pm }(p_i,p_f) = \sum _{j=1}^2 T_{\mu \rho }^{(j)}(p_i,p_f) F_j^{\mp \pm }(Q^2) \,, \end{aligned}$$
(A.12)

where

$$\begin{aligned} T_{\mu \rho }^{(1)}(p_i,p_f)&= \frac{m_{1^\pm }}{\mathcal {D}} \big [\varOmega \;\mathcal {P}^{T}_{\mu \rho }(p_f) \nonumber \\&-\mathcal {P}^{T}_{\mu \nu }(p_f)p_{i\nu }(p_{f\rho }(p_f\cdot p_i)-m_{1^\pm }^2 p_{i\rho }) \big ] \,, \end{aligned}$$
(A.13a)
$$\begin{aligned} T_{\mu \rho }^{(2)}(p_i,p_f)&= \frac{m_{1^\pm }}{\mathcal {D}} \mathcal {P}^{T}_{\mu \nu }(p_f)p_{i\nu }\big [(p_f\cdot p_i)(p_f+p_i)_{\rho } \nonumber \\&- m_{0^\pm }^{2}p_{f\rho }-m_{1^\pm }^{2}p_{i\rho } \big ], \end{aligned}$$
(A.13b)

with \(\varOmega = (p_i \cdot p_f)^2- p_i^2 p_f^2\) and \(\mathcal {D} = \varOmega , m_{1^-}^4\) for the \(\gamma 1^+ \rightarrow 0^-\) and \(\gamma 1^-\rightarrow 1^+ \) cases, respectively.

Accurate interpolations of the computed results for these form factors are provided by [2, 3] Padé approximants with the coefficients described in Table 4. They are illustrated in Fig. 13. Evidently, \(F_1\) is dominant in both cases and the \(0^+\leftrightarrow 1^-\) transition form factors exhibit greater sensitivity to the DqAMM.

Fig. 13
figure 13

Upper panel – A. \(\gamma ^{(*)} 1^+ \rightarrow 0^-\) transition form factors, Eq. (A.12): \(F_1(Q^2)\) – solid red; and \(F_2(Q^2)\) – dashed blue. Lower panel – B. \(\gamma ^{(*)} 1^- \rightarrow 0^+\) transition form factors with legend as in A. In each case, the shaded areas show the response to variation of the DqAMM strength, \(\zeta \in [0,0.5]\), around the highlighted \(\zeta =1/3\) curves

The final transition is \(\gamma 1^- \rightarrow 1^+\), a complete description of which requires three form factors:

$$\begin{aligned} \varLambda _{\mu \alpha \beta }^{1^+1^-}(K,Q) = \sum _{j=1}^3 T_{\mu \alpha \beta }^{(j)}(K,Q) \, F_j^{1^+1^-}(Q^2), \end{aligned}$$
(A.14)

where

$$\begin{aligned} T_{\mu \alpha \beta }^{(1)}(K,Q)&= m_{1^-} \, \frac{\epsilon _{\mu \rho \sigma \gamma }(p_{i}-p_{f})_{\gamma }}{4\sqrt{2}\varOmega } \nonumber \\&\quad \times (p_{i}+p_{f})_{\sigma } \, \big [2m_{1^-} \, \mathcal {P}_{\lambda \alpha }^{\bot }(p_{i}) \, p^{f}_{\lambda } \, \mathcal {P}_{\rho \beta }^{\bot }(p_{f}) \nonumber \\&\quad +2m_{1^+} \, \mathcal {P}_{\lambda \beta }^{\bot }(p_{f}) \, p^{i}_{\lambda } \, \mathcal {P}_{\rho \alpha }^{\bot }(p_{i}) \big ] \,, \end{aligned}$$
(A.15a)
$$\begin{aligned} T_{\mu \alpha \beta }^{(2)}(K,Q)&= m_{1^-} \, \frac{\epsilon _{\mu \rho \sigma \gamma }(p_{i}-p_{f})_{\gamma }}{4\sqrt{2}\varOmega } \nonumber \\&\quad \times (p_{i}+p_{f})_{\sigma } \big [2m_{1^-} \, \mathcal {P}_{\lambda \alpha }^{\bot }(p_{i}) \, p^{f}_{\lambda } \, \mathcal {P}_{\rho \beta }^{\bot }(p_{f}) \nonumber \\&\quad -2m_{1^+} \, \mathcal {P}_{\lambda \beta }^{\bot }(p_{f}) \, p^{i}_{\lambda } \, \mathcal {P}_{\rho \alpha }^{\bot }(p_{i}) \big ] \,, \end{aligned}$$
(A.15b)
$$\begin{aligned} T_{\mu \alpha \beta }^{(3)}(K,Q)&= \frac{\epsilon _{\mu \rho \sigma \gamma }(p_{i}-p_{f})_{\gamma }}{4\sqrt{2}\varOmega } \nonumber \\&\quad \times \big (-4\varOmega \, \mathcal {P}_{\rho \alpha }^{\bot }(p_{i}) \, \mathcal {P}_{\sigma \beta }^{\bot }(p_{f}) \nonumber \\&\quad + (p_{i}+p_{f})_{\sigma } [(p_{i}^{2}-p_{f}^{2}+Q^{2}) \, p_{f \lambda } \, \mathcal {P}_{\lambda \alpha }^{\bot }(p_{i}) \, \mathcal {P}_{\rho \beta }^{\bot }(p_{f}) \nonumber \\&\quad + (p_{i}^{2}- p_{f}^{2}-Q^{2}) \, p_{i \lambda } \, \mathcal {P}_{\lambda \beta }^{\bot }(p_{f}) \, \mathcal {P}_{\rho \alpha }^{\bot }(p_{i})]\big ) \;. \end{aligned}$$
(A.15c)

This case requires that one evaluate the two possible orderings of incoming/outgoing diquarks in order to guarantee that the vertex \(\varLambda _{\mu \alpha \beta }^{1^+1^-}(K,Q)\) is symmetric under the simultaneous interchanges \(p_i \leftrightarrow p_f\), \(\alpha \leftrightarrow \beta \).

Fig. 14
figure 14

Photon induced \(1^+ \leftrightarrow 1^-\) transition form factors, Eq. (A.14): \(F_1(Q^2)\) – solid red; \(F_2(Q^2)\) – dashed blue; and \(F_3(Q^2)\) – dot-dashed green. The shaded band shows the response to variation of the DqAMM strength, \(\zeta \in [0,0.5]\), around the highlighted \(\zeta =1/3\) curves

The calculated form factors are drawn in Fig. 14. Accurate interpolations of the results are provided by [1, 2] Padé approximants with the coefficients listed in Table 4. The DqAMM has only a marginal impact on these transition form factors.

Appendix B: Nucleon elastic and transition form factors

In our SCI quark+diquark picture of baryons, each elastic and transition form factor can be divided into two separate contributions: photon strikes quark; and photon strikes diquark. Thus, one may rewrite Eq. (11) as follows:

$$\begin{aligned}&\varGamma _\mu ^{BA}(P_f,P_i) \nonumber \\&\quad = \sum _{I=S1,S2,S3}\int _l \varLambda _+^B(P_f) \varLambda _\mu ^I(l;P_f,P_i) \varLambda _+^A(P_i)\,, \nonumber \\&\quad =: \int _l \varLambda _+^B(P_f) \left[ \sum _r \mathcal {Q}_\mu ^{(j)} + \sum _{s,t} \mathcal {D}_\mu ^{(s,t)} \right] \varLambda _+^A(P_i) \nonumber \\ \end{aligned}$$
(B.1)

where \(BA= ++\), \(--\), \(-+\), as before, \(\int _l\) is our SCI regularisation of the four-dimensional integral; and \(\mathcal {Q}_\mu ^{(r)}\) is a diagram in which the photon strikes a quark with a diquark spectator, labelled by \(r=0^+,1^+,0^-,1^-\), whereas \(\mathcal {D}_\mu ^{(s,t)}\) indicates a diagram with a quark spectator to a diquark interaction \(s\leftrightarrow t\), \(s,t=0^+,1^+,0^-,1^-\).

1.1 Appendix B.1: Photon strikes quark

This contribution has the general form

$$\begin{aligned} \mathcal {Q}^{(r)}_\mu= & {} q_r \int _l {\bar{\psi }}_{(m)}^{f(r)} S(l_f^+)\varGamma _\mu ^\gamma (Q) S(l_i^+) \psi _{(m)}^{i(r)} \varDelta ^{(r)}(-l),\nonumber \\ \end{aligned}$$
(B.2)

where \(l_{f,i}^\pm = \pm l + P_{f,i}\), \(P_{f,i}^2=-M_{f,i}^2\), with \(M_{f,i}\) being the masses of the baryons involved, and \(Q^2=(P_f-P_i)^2\). Here, referring to Eq. (3), \(\psi _{(m)}^{i(r)}\) denotes that part of the Faddeev amplitude for the indicated baryon that is associated with component-m of the diquark type r bystander; and \(q_r\) is the charge of the struck quark in units of the positron charge. Depending on r, the diquark propagator may have Lorentz indices that are contracted with those of the Faddeev amplitude, also suppressed:

$$\begin{aligned} \varDelta ^{0^\pm }(K)= & {} \frac{1}{K^2+m_{0^\pm }^2}\;, \end{aligned}$$
(B.3)
$$\begin{aligned} \varDelta ^{1^\pm }_{\mu \nu }(K)= & {} \frac{1}{K^2+m_{1^\pm }^2}\left( \delta _{\mu \nu }+\frac{\delta _\mu \delta _\nu }{m_{1^\pm }^2} \right) \,. \end{aligned}$$
(B.4)

It is worth providing some details here on the \(\varGamma _\mu ^{-+}=\gamma ^{(*)} p \rightarrow N^*(1535)\,\tfrac{1}{2}^-\) transition. Suppose \(r=0^+\), then \(q_r=2/3\), \(m=1\), and

(B.5)

The \(r=0^-\) case is obvious by analogy.

Consider next the case \(r=1^+\). Then \(m=1,2\),

(B.6a)
(B.6b)

In these expressions: , which means \(q_{1^+}^1=-1/3\); and , \(q_{1^+}^2=2/3\). We work in the isospin-symmetry limit; so, as noted following Eq. (4), . Hence, the terms in this \(1^+\)-spectator contribution combine as follows:

(B.7)

etc. Namely, they cancel.

Following this pattern, the contribution to Eq. (B.1) connected with the vector diquark bystander is readily constructed. Since this is an isoscalar diquark, there is no cancellation in this case.

Consider now Eq. (5b). Observe that the initial state nucleon has practically no pseudoscalar or vector diquark content; and we have just seen that the contributions from pseudovector-diquark bystanders cancel amongst themselves. Consequently, regarding the \(\gamma ^{(*)} p \rightarrow N^*(1535)\,\tfrac{1}{2}^-\) transition, only the \(0^+\) diquark spectator diagram can make a material contribution.

The calculation of any given contribution is completed by using a Feynman parametrisation to combine denominators, followed by evaluation of the four-dimensional integral following usual SCI procedures. An explicit example may be found in Ref.  [45].

1.2 Appendix B.2: Photon strikes diquark

For this class of processes, the general expression is:

$$\begin{aligned} \mathcal {D}^{(s,t)}_\mu&= q_{ts} \int _l {\bar{\psi }}^{f(t)}_{(m)} S(l) \psi ^{i(s)}_{(m)} \varDelta ^{t}(l_f^-) \varLambda _{\mu }(l_f^-,l_i^-) \varDelta ^{s}(l_i^-) \;, \end{aligned}$$
(B.8)

where \(\varLambda _\mu \) corresponds to the appropriate photon-diquark vertex in Appendix A and, as above, the diquark propagator and Faddeev amplitude component may have contracted Lorentz indices.

Focusing again on \(\gamma ^{(*)} p \rightarrow N^*(1535)\,\tfrac{1}{2}^-\), using the \(\gamma 0^+ \rightarrow 1^+\) transition as an example and referring to Eq. (3), one has \(q_{ts}=q_{\{ud\}}=1/3\),

(B.9a)
(B.9b)

where \(\varLambda _{\lambda \alpha }^{1^+0^+}\) is given in Eq. (A.11). All other cases are equally straightforward.

Again, the evaluation of any given contribution is completed by following the procedures established in Ref.  [45].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raya, K., Gutiérrez-Guerrero, L.X., Bashir, A. et al. Dynamical diquarks in the \({\varvec{\gamma ^{(*)} p\rightarrow N(1535)\frac{1}{2}^-}}\) transition. Eur. Phys. J. A 57, 266 (2021). https://doi.org/10.1140/epja/s10050-021-00574-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00574-w

Navigation