Skip to main content

Advertisement

Log in

Reactions along the astrophysical s-process path and prospects for neutron radiotherapy with the Liquid-Lithium Target (LiLiT) at the Soreq Applied Research Accelerator Facility (SARAF)

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Neutrons play a dominant role in the stellar nucleosynthesis of heavy elements and the quest for accurate experimental determinations of neutron-induced reaction cross sections becomes more stringent with the refinement of nuclear and astrophysical models. We review here an experimental nuclear-astrophysics program using a high-intensity neutron source based on the 7Li(p, n)7Be reaction with a Liquid-Lithium Target (LiLiT) at the Soreq Applied Research Accelerator Facility (SARAF) Phase I. The quasi-Maxwellian neutron spectrum with effective thermal energy \( kT \approx 30\) keV, characteristic of the thick-target 7Li(p, n) yield at proton energy \( E_p \approx 1.92\) MeV close to its neutron threshold, is well suited for laboratory measurements of neutron capture reactions along the astrophysical s -process path. The high-intensity proton beam (in the mA range) of SARAF and the high power (few kW) dissipation of LiLiT result in the most intense source of neutrons available today at stellar-like energies. The principle, design and properties of the LiLiT device and recent measurements of Maxwellian Averaged Cross Sections (MACS) based on activation of targets of astrophysical interest are described. Decay counting or atom counting methods (accelerator mass spectrometry, atom-trap trace analysis) are used for the detection of short-lived or long-lived activation products, respectively. In a different realm of applications, the 7Li(p, n) reaction is a leading candidate as an accelerator-based neutron source for Boron Neutron Capture Therapy (BNCT). The high neutron yield achievable from a liquid-lithium target, its sustainability of operation under kW-power incident beams and the recent availability of small-size high-intensity accelerators are compatible with a hospital-based clinical facility. An effort towards the characterization and realization of a liquid-lithium target for BNCT is reviewed. Perspectives of pending and future developments towards SARAF Phase II, based on a 40MeV, 5mA CW proton/deuteron superconducting linear accelerator, are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.G.W. Cameron, Stellar Evolution, Nuclear Astrophysics, and Nucleogenesis (Dover Publications Inc., Mineola, New York, 2013) https://doi.org/www.osti.gov/servlets/purl/4709881

  2. E.M. Burbidge et al., Rev. Mod. Phys. 29, 547 (1957)

    ADS  Google Scholar 

  3. F. Käppeler, Prog. Part. Nucl. Phys. 43, 419 (1999)

    Article  ADS  Google Scholar 

  4. F. Käppeler et al., Rev. Mod. Phys. 83, 157 (2011)

    Article  ADS  Google Scholar 

  5. F.-K. Thielemann et al., Prog. Part. Nucl. Phys. 66, 346 (2011)

    ADS  Google Scholar 

  6. J.M. Lattimer, D.N. Schramm, Astrophys. J. 210, 549 (1976)

    Article  ADS  Google Scholar 

  7. D. Eichler et al., Nature 340, 126 (1989)

    Article  ADS  Google Scholar 

  8. B.P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017)

    Article  ADS  Google Scholar 

  9. E. Pian et al., Nature 551, 67 (2017)

    Article  ADS  Google Scholar 

  10. N.R. Tanvir et al., Nature 500, 547 (2013)

    Article  ADS  Google Scholar 

  11. H. Beer, F. Käppeler, Phys. Rev. C 21, 534 (1980)

    Article  ADS  Google Scholar 

  12. W. Ratynski, F. Käppeler, Phys. Rev. C 37, 595 (1988)

    Article  ADS  Google Scholar 

  13. C. Raiteri et al., Astrophys. J. 419, 207 (1993)

    Article  ADS  Google Scholar 

  14. M. Limongi, O. Straniero, A. Chieffi, Astrophys. J. Suppl. 129, 625 (2000)

    Article  ADS  Google Scholar 

  15. M. Heil et al., Phys. Rev. C 77, 015808 (2008)

    Article  ADS  Google Scholar 

  16. P.W. Merrill, Astrophys. J. 116, 21 (1952)

    Article  ADS  Google Scholar 

  17. P.W. Merrill, Science 115, 479 (1952)

    Article  Google Scholar 

  18. W. Wang et al., Astron. Astrophys. 469, 1005 (2007)

    Article  ADS  Google Scholar 

  19. K. Knie et al., Phys. Rev. Lett. 93, 171103 (2004)

    Article  ADS  Google Scholar 

  20. A. Wallner et al., Nature 532, 69 (2016)

    Article  ADS  Google Scholar 

  21. F. Käppeler, F.K. Thielemann, M. Wiescher, Annu. Rev. Nucl. Part. Sci. 48, 175 (1998)

    Article  ADS  Google Scholar 

  22. H. Nassar et al., Phys. Rev. Lett. 94, 092504 (2005)

    Article  ADS  Google Scholar 

  23. I. Dillmann et al., Nucl. Instrum. Methods Phys. Res. B 268, 1283 (2010)

    Article  ADS  Google Scholar 

  24. C. Massimi et al., Phys. Rev. C 81, 044616 (2010)

    Article  ADS  Google Scholar 

  25. C. Massimi et al., Eur. Phys. J. A 50, 124 (2014)

    Article  ADS  Google Scholar 

  26. A.O. Hanson, D.L. Benedict, Phys. Rev. 65, 33 (1944)

    Article  ADS  Google Scholar 

  27. Richard Taschek, Arthur Hemmendinger, Phys. Rev. 74, 373 (1948)

    Article  ADS  Google Scholar 

  28. H.W. Newson et al., Phys. Rev. 108, 1294 (1957)

    Article  ADS  Google Scholar 

  29. A. Kreisel, Phase-I Proton/Deutron Linac Beam Operation Status, in Proceedings of LINAC 2014 (Geneva, Switzerland, 2014) WEIOB02, 770, https://doi.org/accelconf.web.cern.ch/AccelConf/LINAC2014/papers/weiob02.pdf

  30. Israel Mardor et al., Eur. Phys. J. A 54, 91 (2018)

    Article  ADS  Google Scholar 

  31. James F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010)

    Article  ADS  Google Scholar 

  32. S. Halfon et al., Rev. Sci. Instrum. 84, 123507 (2013)

    Article  ADS  Google Scholar 

  33. Claude B. Reed et al., Nucl. Phys. A 746, 161 (2004)

    Article  ADS  Google Scholar 

  34. P. Grand, A.N. Goland, Nucl. Instrum. Methods 145, 49 (1977)

    Article  ADS  Google Scholar 

  35. Yu.M. Gelfgat, J. Priede, Magnetohydrodynamics 31, 188 (1995)

    Google Scholar 

  36. S. Halfon, Study and development of a high intensity neutron source based on a liquid lithium target towards application to boron neutron capture therapy, PhD Thesis, Hebrew University of Jerusalem (2014)

  37. S. Halfon et al., Rev. Sci. Instrum. 85, 056105 (2014)

    Article  ADS  Google Scholar 

  38. M. Tessler et al., Phys. Lett. B 751, 418 (2015)

    Article  ADS  Google Scholar 

  39. Y. Momozaki, Thermal Design Analysis for Liquid Metal Windowless Targets, in Third High-Power Targetry Workshop, Bad Zurzach, Switzerland, 2007 (2008) https://doi.org/puhep1.princeton.edu/mumu/target/Reed/reed_102009.pdf

  40. Jafar Safarian, Thorvald A. Engh, Metall. Mater Trans. A 44, 747 (2013)

    Article  Google Scholar 

  41. T. Hua, Design and analysis of the lithium target system for the International Fusion Materials Irradiation Facility (IFMIF), in Proceedings of the 16th International Symposium on Fusion Engineering, Vol. 2 (IEEE, 1995) pp. 1242--1246

  42. L. Danon, Thermal Imaging of the Liquid-Lithium Target (LiLiT) used for Neutron Production, Masters Thesis, unpublished

  43. A. Kreisel, Calculations of the SARAF beam distribution on the LiLit Nozzle, private communication

  44. M. Friedman et al., Nucl. Instrum. Methods Phys. Res. Sect. A 698, 117 (2013)

    Article  ADS  Google Scholar 

  45. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. Sect. A 506, 250 (2003)

    Article  ADS  Google Scholar 

  46. Horst Liskien, Arno Paulsen, At. Data Nucl. Data Tables 15, 57 (1975)

    Article  Google Scholar 

  47. J.H. Gibbons, R.L. Macklin, Phys. Rev. 114, 571 (1959)

    Article  ADS  Google Scholar 

  48. C.L. Lee, X.-L. Zhou, Nucl. Instrum. Methods Phys. Res. Sec. B 152, 1 (1999)

    Article  ADS  Google Scholar 

  49. R.L. Macklin, J.H. Gibbons, Phys. Rev. 109, 105 (1958)

    Article  ADS  Google Scholar 

  50. L. Damone et al., Phys. Rev. Lett. 121, 042701 (2018)

    Article  ADS  Google Scholar 

  51. M. Friedman, M. Paul, M. Tessler, in preparation

  52. G. Feinberg et al., Phys. Rev. C 85, 055810 (2012)

    Article  ADS  Google Scholar 

  53. C. Lederer et al., Phys. Rev. C 85, 055809 (2012)

    Article  ADS  Google Scholar 

  54. M.B. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011)

    Article  ADS  Google Scholar 

  55. R.L. Macklin, J.H. Gibbons, Phys. Rev. 159, 1007 (1967)

    Article  ADS  Google Scholar 

  56. J.W. Boldeman et al., Nucl. Phys. A 269, 31 (1976)

    Article  ADS  Google Scholar 

  57. A. de L. Musgrove, Neutron Physics and Nuclear Data for Reactors and Other Applied Purposes (OECD, Paris, 1978) p. 449

  58. J. Wyrick, W. Poenitz, Technical report ANL-83-4, Argonne National Laboratory (1983)

  59. K.A. Toukan, F. Käppeler, Astrophys. J. 348, 357 (1990)

    Article  ADS  Google Scholar 

  60. G. Tagliente et al., Phys. Rev. C 84, 015801 (2011)

    Article  ADS  Google Scholar 

  61. B. Allen, J. Gibbons, R. Macklin, Adv. Nucl. Phys. 4, 205 (1971)

    Article  Google Scholar 

  62. G. Tagliente et al., Phys. Rev. C 84, 055802 (2011)

    Article  ADS  Google Scholar 

  63. I. Dillmann, KADoNiS v0.3 - The third update of the Karlsruhe Astrophysical Database of Nucleosynthesis in Stars, in EFNUDAT Fast Neutrons, scientific workshop on neutron measurements, theory and applications (JRC-IRMM, Geel, Belgium, 2009) https://doi.org/www.kadonis.org/

  64. Günther K. Nicolussi et al., Science 277, 1281 (1997)

    Article  ADS  Google Scholar 

  65. E. Zinner, Annu. Rev. Earth Planet. Sci. 26, 147 (1998)

    Article  ADS  Google Scholar 

  66. M. Lugaro et al., Astrophys. J. 780, 95 (2014)

    Article  ADS  Google Scholar 

  67. M. Lugaro et al., Astrophys. J. 593, 486 (2003)

    Article  ADS  Google Scholar 

  68. P. Neyskens et al., Nature 517, 174 (2015)

    Article  ADS  Google Scholar 

  69. A.M. Davis, in Nuclei in the Cosmos V, edited by N. Prantzos, H. Harissopulos (Editions Frontieres, Paris, 1998) p. 563

  70. R.J. Stancliffe et al., Nucl. Phys. A 758, 569 (2005)

    Article  ADS  Google Scholar 

  71. W.R. Dixon, Nucl. Instrum. Methods 103, 415 (1972)

    Article  ADS  Google Scholar 

  72. R.E. MacFarlane, ENDF uncertainties for neutron capture on Au (2012) https://doi.org/t2.lanl.gov/nis/data/endf/covVII.1/au/197pc33

  73. C. Lederer et al., Phys. Rev. C 83, 034608 (2011)

    Article  ADS  Google Scholar 

  74. H. Xiaolong, Nucl. Data Sheets 110, 2533 (2009)

    Article  ADS  Google Scholar 

  75. N. Nica, Nucl. Data Sheets 111, 525 (2010)

    Article  ADS  Google Scholar 

  76. D. Zahnow et al., Z. Phys. A 351, 229 (1995)

    Article  ADS  Google Scholar 

  77. G.P. Antropov et al., Izv. Ross. Akad. Nauk, Ser. Fiz. 33, 700 (1969)

    Google Scholar 

  78. D. Brajnik et al., Phys. Rev. C 13, 1852 (1976)

    Article  ADS  Google Scholar 

  79. L. Weissman et al., Phys. Rev. C 96, 015802 (2017)

    Article  ADS  Google Scholar 

  80. A. Shor et al., Phys. Rev. C 96, 055805 (2017)

    Article  Google Scholar 

  81. S. Pavetich et al., Phys. Rev. C 99, 015801 (2019)

    Article  ADS  Google Scholar 

  82. M. Tessler et al., Phys. Rev. Lett. 121, 112701 (2018)

    Article  ADS  Google Scholar 

  83. M. Paul, Nucleosynthesis Reactions with the High-Intensity SARAF-LiLiT Neutron Source, in Proceedings of the 26th International Nuclear Physics Conference, Adelaide, Australia (SISSA Medialab, 2016) https://doi.org/pos.sissa.it/281/139/pdf

  84. Walter Kutschera, Adv. Phys. X 1, 570 (2016)

    Google Scholar 

  85. M. Paul et al., Phys. Lett. B 94, 303 (1980)

    Article  ADS  Google Scholar 

  86. H. Nassar et al., Phys. Rev. Lett. 96, 041102 (2006)

    Article  ADS  Google Scholar 

  87. A. Wallner, Nucl. Instrum. Methods Phys. Res. B 268, 1277 (2010)

    Article  ADS  Google Scholar 

  88. C.Y. Chen et al., Science 286, 1139 (1999)

    Article  Google Scholar 

  89. P. Collon et al., Nucl. Instrum. Methods Phys. Res. Sect. B 123, 122 (1997)

    Article  ADS  Google Scholar 

  90. P. Collon et al., Earth Planet. Sci. Lett. 182, 103 (2000)

    Article  ADS  Google Scholar 

  91. C.F. von Weizsäcker, Physik. Zeits 38, 623 (1937)

    Google Scholar 

  92. Edward Anders, Tobias Owen, Science 198, 453 (1977)

    Article  ADS  Google Scholar 

  93. Katharina Lodders, Astrophys. J. 591, 1220 (2003)

    Article  Google Scholar 

  94. R.D. Hoffman et al., Astrophys. J. 521, 735 (1999)

    Article  ADS  Google Scholar 

  95. R. Reifarth, K. Schwarz, F. Kaeppeler, Astrophys. J. 528, 573 (2000)

    Article  ADS  Google Scholar 

  96. G. Rupp et al., Nucl. Instrum. Methods Phys. Res. A 608, 152 (2009)

    Article  ADS  Google Scholar 

  97. G.E. McMurtrie, D.P. Crawford, Phys. Rev. 77, 840 (1950)

    Article  ADS  Google Scholar 

  98. P. Wille, Atomkernergie 13, 383 (1968)

    Google Scholar 

  99. Seymour Katcoff, Phys. Rev. 87, 886 (1952)

    Article  ADS  Google Scholar 

  100. M. Paul et al., Nucl. Instrum. Methods Phys. Res. A 277, 418 (1989)

    Article  ADS  Google Scholar 

  101. Raymond Davis, Prog. Part. Nucl. Phys. 32, 13 (1994)

    Article  ADS  Google Scholar 

  102. H.H. Loosli et al., Nucl. Instrum. Methods Phys. Res. B 17, 402 (1986)

    Article  ADS  Google Scholar 

  103. Robin A. Riedmann, Roland Purtschert, Environ. Sci. Technol. 45, 8656 (2011)

    Article  ADS  Google Scholar 

  104. Philippe Collon, Walter Kutschera, Zheng-Tian Lu, Annu. Rev. Nucl. Part. Sci. 54, 39 (2004)

    Article  ADS  Google Scholar 

  105. P. Collon et al., Nucl. Instrum. Methods Phys. Res. B 283, 77 (2012)

    Article  ADS  Google Scholar 

  106. M. Paul, Physics Division Annual Report, ANL-97/14, 79 (1997) https://doi.org/inldigitallibrary.inl.gov/Reports/ANL-97-14.pdf

  107. A.J. Koning, D. Rochman, Nucl. Data Sheets 113, 2841 (2012)

    Article  ADS  Google Scholar 

  108. A.J. Koning, TENDL-2015: TALYS-based evaluated nuclear data library, https://doi.org/tendl.web.psi.ch/tendl_2015/tendl2015.html

  109. A.J. Koning, TENDL-2017: TALYS-based evaluated nuclear data library, https://doi.org/tendl.web.psi.ch/tendl_2017/tendl2017.html

  110. S. Hilaire, A. Koning, S. Goriely, TALYS-1.8, A Nuclear Reaction Program, NRG-1755 ZG Petten, The Netherlands (2015) https://doi.org/www.talys.eu/home/

  111. S.E. Mughabghab, Atlas of Neutron Resonances, data available online: https://doi.org/www-nds.iaea.org/relnsd/NdsEnsdf/neutroncs.html (Elsevier Science, 2006)

  112. S.E. Woosley et al., At. Data Nucl. Data Tables 22, 371 (1978)

    Article  ADS  Google Scholar 

  113. H. Gruppelaar, H. van der Kamp, Nuclear Data for Science and Technology, edited by K. Böckhoff (Reidel, Dordrecht, Antwerp, 1983) p. 643

  114. Thomas Rauscher, Friedrich-Karl Thielemann, At. Data Nucl. Data Tables 75, 1 (2000)

    Article  ADS  Google Scholar 

  115. S. Goriely, Hauser-Feshbach rates for neutron capture reactions (version 8/29/2005) https://doi.org/www-astro.ulb.ac.be/Html/hfr.html

  116. JEFF-3.2 Library, Joint Evaluated Fission and Fusion (2014) https://doi.org/www.oecd-nea.org/dbforms/data/eva/evatapes/jeff_32/

  117. ROSFOND-2010 Library, Institute of Physics and Power Engineering (2010) https://doi.org/www.ippe.ru/podr/abbn/libr/rosfond.php

  118. https://doi.org/sourceforge.net/projects/nucnet-tools/

  119. E. Anders, N. Grevesse, Geochim. Cosmochim. Acta 53, 197 (1989)

    Article  ADS  Google Scholar 

  120. L. Alaerts et al., Geochim. Cosmochim. Acta 44, 189 (1980)

    Article  ADS  Google Scholar 

  121. U. Ott et al., Nature 332, 700 (1988)

    Article  ADS  Google Scholar 

  122. H. Beer, R.L. Macklin, Astrophys. J. 339, 962 (1989)

    Article  ADS  Google Scholar 

  123. W. Jiang et al., Geochim. Cosmochim. Acta 91, 1 (2012)

    Article  ADS  Google Scholar 

  124. J.C. Zappala et al., Chem. Geol. 453, 66 (2017)

    Article  ADS  Google Scholar 

  125. G.L. Locher, Am. J. Roentgenol. 36, 1 (1936)

    Google Scholar 

  126. J. Chadwick, Proc. R. Soc. London A 136, 692 (1932)

    Article  ADS  Google Scholar 

  127. L.E. Farr, J.S. Robertson, E. Stickley, Proc. Natl. Acad. Sci. 40, 1087 (1954)

    Article  ADS  Google Scholar 

  128. Current status of neutron capture therapy, IAEA-TECDOC-1223 (IAEA, Vienna, 2001) https://doi.org/www-pub.iaea.org/MTCD/publications/PDF/te_1223_prn.pdf

  129. Rolf F. Barth et al., Clin. Cancer Res. 11, 3987 (2005)

    Article  Google Scholar 

  130. E. Bisceglie et al., Phys. Med. Biol. 45, 49 (2000)

    Article  Google Scholar 

  131. O.E. Kononov, V.N. Kononov, N.A. Solov’ev, At. Energy 94, 417 (2003)

    Article  Google Scholar 

  132. Kenichi Tanaka et al., Appl. Radiat. Isot. 67, 259 (2009)

    Article  Google Scholar 

  133. V. Aleynik et al., Appl. Radiat. Isot. 69, 1635 (2011)

    Article  Google Scholar 

  134. C. Willis, J. Lenz, D. Swenson, High power lithium target for accelerator based BNCT, in Proceedings of LINAC08, Victoria, BC, Canada (2008) https://doi.org/accelconf.web.cern.ch/AccelConf/LINAC08/papers/mop063.pdf

  135. D.A. Allen, T.D. Beynon, Med. Phys. 27, 1113 (2000)

    Article  Google Scholar 

  136. A.A. Burlon et al., Appl. Radiat. Isot. 61, 811 (2004)

    Article  Google Scholar 

  137. S. Halfon et al., Appl. Radiat. Isot. 88, 238 (2014)

    Article  Google Scholar 

  138. J.F. Briesmeister, MCNP- a general Monte Carlo N particles transport code system, LANL report LA-12626-M (1997)

  139. J.T. Goorley, W.S. Kiger, R.G. Zamenhof, Med. Phys. 29, 145 (2002)

    Article  Google Scholar 

  140. J.H. Hubbell, S. Seltzer, Table of x ray mass atomic attenuation coefficient and mass energy absorption coefficient 1keV to 20MeV for Elements $z=1$ to 98 and 48 additional substances of dosimetric interest, technical report NISTIR 5632 (National Institute of Standards and Technology, 1995) https://doi.org/www.nist.gov/pml/x-ray-mass-attenuation-coefficients

  141. Y. Nakagawa et al., J. Neuro-Oncol. 62, 87 (2003)

    Google Scholar 

  142. P.J. Kueffer et al., Proc. Natl. Acad. Sci. 110, 6512 (2013)

    Article  ADS  Google Scholar 

  143. H. Kobayashi, Construction of a BNCT facility using an 8MeV high power proton linac in Tokai, in Proceedings of IPAC2012, New Orleans, Louisiana, USA (2012) https://doi.org/accelconf.web.cern.ch/accelconf/ipac2012/papers/thppr048.pdf

  144. N. Smick, Hyperion Accelerator Technology for BNCT, in Accelerator-Based Neutron Production Workshop, Laboratori Nazionali di Legnaro, Padova, Italy, 2014 (2014) https://doi.org/agenda.infn.it/getFile.py/access?contribId=32&resId=0&materialId=slides&confId=7214

  145. S.Yu. Taskaev, Phys. Part. Nucl. 46, 956 (2015)

    Article  Google Scholar 

  146. Thomas E. Blue, Jacquelyn C. Yanch, J. Neuro-Oncol. 62, 19 (2003)

    Google Scholar 

  147. C.K. Wang, T.E. Blue, R. Gahbauer, Nucl. Technol. 84, 93 (1989)

    Article  Google Scholar 

  148. J.C. Yanch et al., Med. Phys. 19, 709 (1992)

    Article  ADS  Google Scholar 

  149. Kyung-O Kim, Jong Kyung Kim, Soon Young Kim, Appl. Radiat. Isot. 67, 1173 (2009)

    Article  Google Scholar 

  150. L. Weissman, M. Paul, Neutron-rich radioactive-ion production at SARAF phase-II, SNRC internal report (Soreq Nuclear Research Center, Yavne, Israel, 2013)

  151. M. Hass et al., J. Phys. G: Nucl. Part. Phys. 35, 1 (2008)

    Article  Google Scholar 

  152. I. Mukul et al., Nucl. Instrum. Methods Phys. Res. A 899, 16 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Paul.

Additional information

Communicated by N. Alamanos

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, M., Tessler, M., Friedman, M. et al. Reactions along the astrophysical s-process path and prospects for neutron radiotherapy with the Liquid-Lithium Target (LiLiT) at the Soreq Applied Research Accelerator Facility (SARAF). Eur. Phys. J. A 55, 44 (2019). https://doi.org/10.1140/epja/i2019-12723-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12723-5

Navigation