Skip to main content
Log in

Exclusive decays \(\chi_{cJ}\rightarrow K^{\ast} (892)K\) within the effective field theory framework

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We study hadronic decays \( \chi_{cJ}\rightarrow K^{\ast}(892)\bar{K}\) within the effective field theory framework. We consider the colour-singlet and colour-octet contributions and study their properties using (p)NRQCD effective theory. We show that infrared singularities in collinear integrals of the colour-singlet amplitudes can be absorbed into the renormalisation of the colour-octet matrix elements. The heavy quark spin symmetry allows us to establish a relation between the colour-octet matrix elements and to define the spin symmetry breaking corrections which are free from infrared singularities. We apply obtained results for a phenomenological description of the branching fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Quarkonium Working Group Collaboration (N. Brambilla), arXiv:hep-ph/0412158

  2. N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011) arXiv:1010.5827 [hep-ph]

    Article  ADS  Google Scholar 

  3. G.T. Bodwin, E. Braaten, G.P. Lepage, Phys. Rev. D 46, R1914 (1992) arXiv:hep-lat/9205006

    Article  ADS  Google Scholar 

  4. G.T. Bodwin, E. Braaten, G.P. Lepage, Phys. Rev. D 51, 1125 (1995) 55

    Article  ADS  Google Scholar 

  5. Y.Q. Chen, E. Braaten, Phys. Rev. Lett. 80, 5060 (1998) arXiv:hep-ph/9801226

    Article  ADS  Google Scholar 

  6. J. Bolz, P. Kroll, G.A. Schuler, Phys. Lett. B 392, 198 (1997) arXiv:hep-ph/9610265

    Article  ADS  Google Scholar 

  7. J. Bolz, P. Kroll, G.A. Schuler, Eur. Phys. J. C 2, 705 (1998) arXiv:hep-ph/9704378

    ADS  Google Scholar 

  8. S.M.H. Wong, Eur. Phys. J. C 14, 643 (2000) arXiv:hep-ph/9903236

    Article  ADS  Google Scholar 

  9. M. Beneke, L. Vernazza, Nucl. Phys. B 811, 155 (2009) arXiv:0810.3575 [hep-ph]

    Article  ADS  Google Scholar 

  10. M. Ablikim et al., Phys. Rev. D 74, 072001 (2006) arXiv:hep-ex/0607023

    Article  ADS  Google Scholar 

  11. BESIII Collaboration (M. Ablikim et al.), Phys. Rev. D 96, 111102 (2017) arXiv:1612.07398 [hep-ex]

    Article  ADS  Google Scholar 

  12. Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)

    Article  ADS  Google Scholar 

  13. S.J. Brodsky, G.P. Lepage, Phys. Rev. D 24, 2848 (1981)

    Article  ADS  Google Scholar 

  14. V.L. Chernyak, A.R. Zhitnitsky, Nucl. Phys. B 201, 492 (1982) 214

    Article  ADS  Google Scholar 

  15. V.L. Chernyak, A.R. Zhitnitsky, Phys. Rep. 112, 173 (1984)

    Article  ADS  Google Scholar 

  16. X.H. Liu, Q. Zhao, Phys. Rev. D 81, 014017 (2010) arXiv:0912.1508 [hep-ph]

    Article  ADS  Google Scholar 

  17. G.P. Lepage, L. Magnea, C. Nakhleh, U. Magnea, K. Hornbostel, Phys. Rev. D 46, 4052 (1992) arXiv:hep-lat/9205007

    Article  ADS  Google Scholar 

  18. A. Pineda, J. Soto, Nucl. Phys. Proc. Suppl. 64, 428 (1998) arXiv:hep-ph/9707481

    Article  ADS  Google Scholar 

  19. A. Pineda, J. Soto, Phys. Lett. B 420, 391 (1998) arXiv:hep-ph/9711292

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Beneke, V.A. Smirnov, Nucl. Phys. B 522, 321 (1998) arXiv:hep-ph/9711391

    Article  ADS  Google Scholar 

  21. N. Brambilla, A. Pineda, J. Soto, A. Vairo, Phys. Rev. D 60, 091502 (1999) arXiv:hep-ph/9903355

    Article  ADS  Google Scholar 

  22. N. Brambilla, A. Pineda, J. Soto, A. Vairo, Nucl. Phys. B 566, 275 (2000) arXiv:hep-ph/9907240

    Article  ADS  Google Scholar 

  23. N. Brambilla, A. Pineda, J. Soto, A. Vairo, Rev. Mod. Phys. 77, 1423 (2005) arXiv:hep-ph/0410047

    Article  ADS  Google Scholar 

  24. C.W. Bauer, S. Fleming, M.E. Luke, Phys. Rev. D 63, 014006 (2000)

    Article  ADS  Google Scholar 

  25. C.W. Bauer, S. Fleming, D. Pirjol, I.W. Stewart, Phys. Rev. D 63, 114020 (2001)

    Article  ADS  Google Scholar 

  26. C.W. Bauer, I.W. Stewart, Phys. Lett. B 516, 134 (2001)

    Article  ADS  Google Scholar 

  27. C.W. Bauer, D. Pirjol, I.W. Stewart, Phys. Rev. D 65, 054022 (2002)

    Article  ADS  Google Scholar 

  28. M. Beneke, A.P. Chapovsky, M. Diehl, T. Feldmann, Nucl. Phys. B 643, 431 (2002)

    Article  ADS  Google Scholar 

  29. M. Beneke, T. Feldmann, Phys. Lett. B 553, 267 (2003)

    Article  ADS  Google Scholar 

  30. M. Beneke, T. Feldmann, Nucl. Phys. B 592, 3 (2001) arXiv:hep-ph/0008255

    Article  ADS  Google Scholar 

  31. M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, Nucl. Phys. B 606, 245 (2001) arXiv:hep-ph/0104110

    Article  ADS  Google Scholar 

  32. P. Ball, V.M. Braun, A. Lenz, JHEP 05, 004 (2006) arXiv:hep-ph/0603063

    Article  ADS  Google Scholar 

  33. A.V. Manohar, I.W. Stewart, Phys. Rev. D 76, 074002 (2007) arXiv:hep-ph/0605001

    Article  ADS  Google Scholar 

  34. R.P. Feynman, Photon-Hadron Interactions (W.A. Benjamin Reading, MA, 1972)

  35. N. Isgur, C.H. Llewellyn Smith, Phys. Rev. Lett. 52, 1080 (1984)

    Article  ADS  Google Scholar 

  36. N. Isgur, C.H. Llewellyn Smith, Nucl. Phys. B 317, 526 (1989)

    Article  ADS  Google Scholar 

  37. N. Kivel, M. Vanderhaeghen, JHEP 02, 032 (2016) arXiv:1509.07375 [hep-ph]

    Article  ADS  Google Scholar 

  38. J. Schwinger, J. Math. Phys. 5, 1606 (1964)

    Article  ADS  Google Scholar 

  39. M. Beneke, Y. Kiyo, K. Schuller, arXiv:1312.4791 [hep-ph]

  40. M. Beneke, Y. Kiyo, A.A. Penin, Phys. Lett. B 653, 53 (2007) arXiv:0706.2733 [hep-ph]

    Article  ADS  Google Scholar 

  41. M. Beneke, Y. Kiyo, Phys. Lett. B 668, 143 (2008) arXiv:0804.4004 [hep-ph]

    Article  ADS  Google Scholar 

  42. N. Brambilla, M.A. Escobedo, J. Ghiglieri, A. Vairo, JHEP 12, 116 (2011) arXiv:1109.5826 [hep-ph]

    Article  ADS  Google Scholar 

  43. E.J. Eichten, C. Quigg, Phys. Rev. D 52, 1726 (1995) arXiv:hep-ph/9503356

    Article  ADS  Google Scholar 

  44. A. Khodjamirian, T. Mannel, M. Melcher, Phys. Rev. D 70, 094002 (2004) arXiv:hep-ph/0407226

    Article  ADS  Google Scholar 

  45. V.M. Braun, A. Lenz, Phys. Rev. D 70, 074020 (2004) arXiv:hep-ph/0407282

    Article  ADS  Google Scholar 

  46. P. Ball, R. Zwicky, Phys. Lett. B 633, 289 (2006) arXiv:hep-ph/0510338

    Article  ADS  Google Scholar 

  47. V.M. Braun et al., Phys. Rev. D 74, 074501 (2006) arXiv:hep-lat/0606012

    Article  ADS  Google Scholar 

  48. UKQCD Collaboration (P.A. Boyle et al.), Phys. Lett. B 641, 67 (2006) arXiv:hep-lat/0607018

    Article  ADS  Google Scholar 

  49. P. Ball, G.W. Jones, JHEP 03, 069 (2007) arXiv:hep-ph/0702100

    Article  ADS  Google Scholar 

  50. P. Ball, V.M. Braun, A. Lenz, JHEP 08, 090 (2007) arXiv:0707.1201 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Kivel.

Additional information

Communicated by R. Alkofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kivel, N. Exclusive decays \(\chi_{cJ}\rightarrow K^{\ast} (892)K\) within the effective field theory framework. Eur. Phys. J. A 54, 146 (2018). https://doi.org/10.1140/epja/i2018-12582-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12582-6

Navigation