Skip to main content
Log in

A statistical method to estimate low-energy hadronic cross sections

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In this article we propose a model based on the Statistical Bootstrap approach to estimate the cross sections of different hadronic reactions up to a few GeV in c.m.s. energy. The method is based on the idea, when two particles collide a so-called fireball is formed, which after a short time period decays statistically into a specific final state. To calculate the probabilities we use a phase space description extended with quark combinatorial factors and the possibility of more than one fireball formation. In a few simple cases the probability of a specific final state can be calculated analytically, where we show that the model is able to reproduce the ratios of the considered cross sections. We also show that the model is able to describe proton-antiproton annihilation at rest. In the latter case we used a numerical method to calculate the more complicated final state probabilities. Additionally, we examined the formation of strange and charmed mesons as well, where we used existing data to fit the relevant model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Scherer, Adv. Nucl. Phys. 27, 277 (2003)

    Google Scholar 

  2. W.E. Caswell, G.P. Lepage, Phys. Lett. B 167, 437 (1986)

    Article  ADS  Google Scholar 

  3. J. Van de Wiele, S. Ong, Eur. Phys. J. A 46, 291 (2010)

    Article  ADS  Google Scholar 

  4. E. Fermi, Prog. Theor. Phys. 5, 570 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  5. R. Hagedorn, Nuovo Cimento Suppl. 3, 147 (1965)

    Google Scholar 

  6. R. Hagedorn, Nuovo Cimento A 56, 1027 (1968)

    Article  ADS  Google Scholar 

  7. S.C. Frautschi, Phys. Rev. D 3, 2821 (1971)

    Article  ADS  Google Scholar 

  8. W. Nahm, Nucl. Phys. B 45, 525 (1972)

    Article  ADS  Google Scholar 

  9. J. Yellin, Nucl. Phys. B 52, 583 (1973)

    Article  ADS  Google Scholar 

  10. F. Becattini, U.W. Heinz, Z. Phys. C 76, 269 (1997) 76

    Article  Google Scholar 

  11. F. Becattini, J. Phys. G 23, 1933 (1997)

    Article  ADS  Google Scholar 

  12. P.V. Degtyarenko, M.V. Kosov, H.P. Wellisch, Eur. Phys. J. A 8, 217 (2000)

    Article  ADS  Google Scholar 

  13. F. Becattini, L. Ferroni, Acta Phys. Pol. B 35, 207 (2004)

    ADS  Google Scholar 

  14. F. Becattini, L. Ferroni, Eur. Phys. J. C 38, 225 (2004) 66

    Article  ADS  Google Scholar 

  15. C. Bignamini, F. Becattini, F. Piccinini, Eur. Phys. J. C 72, 2176 (2012)

    Article  ADS  Google Scholar 

  16. F. Becattini, AIP Conf. Proc. 1422, 74 (2012)

    Article  ADS  Google Scholar 

  17. L. Ferroni, F. Becattini, Eur. Phys. J. C 71, 1824 (2011)

    Article  ADS  Google Scholar 

  18. G. Wolf, G. Batko, W. Cassing, U. Mosel, K. Niita, M. Schaefer, Nucl. Phys. A 517, 615 (1990)

    Article  ADS  Google Scholar 

  19. G. Wolf, W. Cassing, U. Mosel, Nucl. Phys. A 552, 549 (1993)

    Article  ADS  Google Scholar 

  20. S. Teis, W. Cassing, M. Effenberger, A. Hombach, U. Mosel, G. Wolf, Z. Phys. A 356, 421 (1997)

    Article  ADS  Google Scholar 

  21. G. Wolf, B. Kampfer, M. Zetenyi, Phys. At. Nucl. 75, 718 (2012)

    Article  Google Scholar 

  22. J. Rafelski, https://doi.org/10.1007/978-3-319-17545-4_33

  23. K. Sitte (Editor), Kosmische Strahlung II/Cosmic Rays II (Springer, 1967) p. 156--168, https://doi.org/10.1007/978-3-642-46079-1

  24. I. Bediaga, S. Joffily, E. Predazzi, Z. Phys. C 46, 169 (1990)

    ADS  Google Scholar 

  25. G. Batko, J. Randrup, T. Vetter, Nucl. Phys. A 546, 761 (1992)

    Article  ADS  Google Scholar 

  26. F. Johns, B. Margolis, W.J. Meggs, R.K. Logan, Phys. Rev. Lett. 29, 756 (1972)

    Article  ADS  Google Scholar 

  27. R. Hagedorn, J. Ranft, Nucl. Phys. B 48, 157 (1972)

    Article  ADS  Google Scholar 

  28. E. Cuautle, A. Ayala, J. Phys. Conf. Ser. 509, 012092 (2014)

    Article  Google Scholar 

  29. A. Baldini, V. Flaminio, W.G. Moorhead, D.R.O. Morrison, H. Schopper, Landolt-Boernstein. New Series, 1/12A (Springer, Berlin, Germany, 1988)

  30. A. Baldini, V. Flaminio, W.G. Moorhead, D.R.O. Morrison, H. Schopper, Landolt-Boernstein. New Series, 1/12B (Springer, Berlin, Germany, 1988)

  31. Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)

    Article  ADS  Google Scholar 

  32. CLAS Collaboration (M. Mestayer et al.), Phys. Rev. Lett. 113, 152004 (2014)

    Article  ADS  Google Scholar 

  33. P. Castorina, H. Satz, Adv. High Energy Phys. 2014, 376982 (2014)

    Article  Google Scholar 

  34. P. Castorina, H. Satz, EPJ Web of Conferences 97, 00009 (2015)

    Article  Google Scholar 

  35. H.J. Drescher, J. Aichelin, K. Werner, Phys. Rev. D 65, 057501 (2002)

    Article  ADS  Google Scholar 

  36. T. Sjostrand, Comput. Phys. Commun. 82, 74 (1994)

    Article  ADS  Google Scholar 

  37. P. Castorina, H. Satz, Eur. Phys. J. A 52, 200 (2016)

    Article  ADS  Google Scholar 

  38. O. Linnyk, E.L. Bratkovskaya, W. Cassing, H. Stoecker, Nucl. Phys. A 786, 183 (2007)

    Article  ADS  Google Scholar 

  39. T. Barnes, Int. J. Mod. Phys. A 21, 5583 (2006)

    Article  ADS  Google Scholar 

  40. Y. Lu, R.D. Amado, Phys. Lett. B 357, 446 (1995)

    Article  ADS  Google Scholar 

  41. W. Blumel, U.W. Heinz, Z. Phys. C 67, 281 (1995)

    Article  ADS  Google Scholar 

  42. C.B. Dover, T. Gutsche, M. Maruyama, A. Faessler, Prog. Part. Nucl. Phys. 29, 87 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Wolf.

Additional information

Communicated by T. Biro

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balassa, G., Kovács, P. & Wolf, G. A statistical method to estimate low-energy hadronic cross sections. Eur. Phys. J. A 54, 25 (2018). https://doi.org/10.1140/epja/i2018-12459-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12459-8

Navigation