Skip to main content
Log in

Relativistic diffusion model with nonlinear drift

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The nonequilibrium-statistical Relativistic Diffusion Model (RDM) is extended to include a nonlinear drift term such that its stationary solution agrees exactly with the thermal equilibrium distribution. The underlying Fokker-Planck equation cannot be solved analytically in this case and we present a numerical solution in rapidity space. The difference to the analytical RDM solution is discussed, and the numerical result is compared to data for net-proton rapidity distributions in \(\sqrt{s_{NN}} = 17.3\) GeV PbPb and 200 GeV AuAu collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Smoluchowski, Ann. Phys. 353, 1103 (1916)

    Article  Google Scholar 

  2. G.E. Uhlenbeck, L.S. Ornstein, Phys. Rev. 36, 823 (1930)

    Article  ADS  Google Scholar 

  3. G. Wolschin, Eur. Phys. J. A 5, 85 (1999)

    Article  ADS  Google Scholar 

  4. G. Wolschin, J. Phys. G 40, 45104 (2013)

    Article  Google Scholar 

  5. G. Wolschin, Phys. Rev. C 91, 014905 (2015)

    Article  ADS  Google Scholar 

  6. G. Wolschin, Phys. Rev. C 94, 024911 (2016)

    Article  ADS  Google Scholar 

  7. Y. Mehtar-Tani, G. Wolschin, Phys. Rev. Lett. 102, 182301 (2009)

    Article  ADS  Google Scholar 

  8. G. Wolschin, M. Biyajima, T. Mizoguchi et al., Phys. Lett. B 633, 38 (2006)

    Article  ADS  Google Scholar 

  9. P. Schulz, G. Wolschin, Eur. Phys. J. A 51, 18 (2015)

    Article  ADS  Google Scholar 

  10. M. Biyajima, M. Ide, T. Mizoguchi et al., Prog. Theor. Phys. 108, 559 (2002)

    Article  ADS  Google Scholar 

  11. R. Hagedorn, Nuovo Cimento Suppl. 3, 147 (1965)

    Google Scholar 

  12. T. Koide, G.S. Denicol, P. Mota et al., Phys. Rev. C 75, 034909 (2007)

    Article  ADS  Google Scholar 

  13. M. Luzum, P. Romatschke, Phys. Rev. C 78, 034915 (2008)

    Article  ADS  Google Scholar 

  14. B.H. Alver, C. Gombeaud, M. Luzum et al., Phys. Rev. C 82, 034913 (2010)

    Article  ADS  Google Scholar 

  15. U. Heinz, R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013)

    Article  ADS  Google Scholar 

  16. G. Denicol, A. Monnai, B. Schenke, Phys. Rev. Lett. 116, 212301 (2016)

    Article  ADS  Google Scholar 

  17. W. van der Schee, B. Schenke, Phys. Rev. C 92, 064907 (2015)

    Article  ADS  Google Scholar 

  18. A.A. Amsden, A.S. Goldhaber, F.H. Harlow et al., Phys. Rev. C 17, 2080 (1978)

    Article  ADS  Google Scholar 

  19. R.B. Clare, D. Strottman, Phys. Rep. 141, 177 (1986)

    Article  ADS  Google Scholar 

  20. Y.B. Ivanov, V.N. Russkikh, V.D. Toneev, Phys. Rev. C 73, 044904 (2006)

    Article  ADS  Google Scholar 

  21. A. Lavagno, Physica A 305, 238 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  22. P. Bastian et al., Kybernetika 46, 294 (2010)

    MathSciNet  Google Scholar 

  23. G. Wolschin, Europhys. Lett. 47, 30 (1999)

    Article  ADS  Google Scholar 

  24. NA49 Collaboration (C. Blume et al.), J. Phys. G 34, 951 (2007)

    Article  ADS  Google Scholar 

  25. BRAHMS Collaboration (I.G. Bearden et al.), Phys. Rev. Lett. 93, 102301 (2004)

    Article  ADS  Google Scholar 

  26. Y. Mehtar-Tani, G. Wolschin, EPL 94, 62003 (2011)

    Article  ADS  Google Scholar 

  27. J. Benecke, T. Chou, C. Yang et al., Phys. Rev. 188, 2159 (1969)

    Article  ADS  Google Scholar 

  28. PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. Lett. 91, 052303 (2003)

    Article  Google Scholar 

  29. PHOBOS Collaboration (B. Alver et al.), Phys. Rev. C 83, 024913 (2011)

    Article  Google Scholar 

  30. G. Torrieri, Phys. Rev. C 82, 054906 (2010)

    Article  ADS  Google Scholar 

  31. D.M. Röhrscheid, G. Wolschin, Phys. Rev. C 86, 024902 (2012)

    Article  ADS  Google Scholar 

  32. J. Cleymans, J. Strümpfer, L. Turko, Phys. Rev. C 78, 017901 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Wolschin.

Additional information

Communicated by G. Torrieri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forndran, F., Wolschin, G. Relativistic diffusion model with nonlinear drift. Eur. Phys. J. A 53, 37 (2017). https://doi.org/10.1140/epja/i2017-12228-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12228-3

Navigation