Skip to main content
Log in

Nuclear structure of N = 86 isotones of Ce, Nd, Sm and Gd

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The collectivity in the low-energy spectra of N = 86 isotones of Ce, Nd, Sm and Gd is studied vis-à-vis their vibrational band structure. The energy level pattern and the E2 transition rates are compared with the predictions of the microscopic dynamic pairing plus quadrupole model plus 5DCH (Bohr-Mottelson view). The role of the Z = 64 subshell in the increase of ground band level energies with increasing Z , and the different effects on the B(E2) values are illustrated. The subshell energy gap versus the occupation of Nilsson single-particle orbits is discussed. A brief discussion of the different current microscopic collective models is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brookhaven National Laboratory, Chart of nuclides of National Nuclear Data Center, www.nndc.bnl.gov.nsdf.

  2. I. Talmi, Nucl. Phys. A 172, 1 (1971).

    Article  ADS  Google Scholar 

  3. A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. 2 (Benjamin, N.Y. 1975).

  4. R.F. Casten, N.V. Zamfir, D.S. Brenner, Phys. Rev. Lett. 71, 227 (1993).

    Article  ADS  Google Scholar 

  5. R.F. Casten, D.D. Warner, D.S. Brenner, R.L. Gill, Phys. Rev. Lett. 47, 1433 (1981).

    Article  ADS  Google Scholar 

  6. F. Iachello, A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, 1987).

  7. J.B. Gupta, Phys. Rev. C 87, 064318 (2013).

    Article  ADS  Google Scholar 

  8. J.B. Gupta, Phys. Rev. C 89, 034321 (2014).

    Article  ADS  Google Scholar 

  9. E. Michelakakis, W.D Hamilton, P. Hungerford, G. Jung, P. Pfeiffer, S.M. Scott, J. Phys. G Nucl. Phys. 8, 11 (1982).

    Article  Google Scholar 

  10. E. Veje, B. Elbek, G. Herskind, M.C. Olesen, Nucl. Phys. A 109, 489 (1968).

    Article  ADS  Google Scholar 

  11. Y. Ikeda H. Yamamoto, K. Kawade, T. Katoh, T. Nagahara, J. Phys. Soc. Jpn. 45, 725 (1978).

    Article  ADS  Google Scholar 

  12. D.M. Snelling, W.D. Hamilton, J. Phys. G Nucl. Phys. 9, 111 (1983).

    Article  ADS  Google Scholar 

  13. D.R. Haenni, T.T. Sughihara, Phys. Rev. C 16, 1129 (1977).

    Article  ADS  Google Scholar 

  14. K. Kumar, M. Baranger, Nucl. Phys. A 110, 529 (1968).

    Article  ADS  Google Scholar 

  15. K. Kumar, in The electromagnetic interactions in nuclear spectroscopy, edited by W.D. Hamilton (NH, 1975) chapt. 3.

  16. T.J. Al-Janabi, J.D. Jafar, H.M. Youhana, A.M. Demidov, L.I. Govor, J. Phys. G Part. Phys. 9, 779 (1983).

    Article  ADS  Google Scholar 

  17. D.F. Coope, S.N. Tripathi, M.C. Shell, J.L. Weil, M.T. McEllistrem, Phys. Rev. C 16, 2223 (1977).

    Article  ADS  Google Scholar 

  18. L. Grodzins, Phys. Lett. 2, 88 (1962).

    Article  ADS  Google Scholar 

  19. A.S. Davydov, G.F. Filippov, Nucl. Phys. 8, 237 (1958).

    Article  Google Scholar 

  20. S. Raman, C.W. Nestor, P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001).

    Article  ADS  Google Scholar 

  21. E. Veje, B. Elbek, B. Herskind, M.C. Olesen, Nucl. Phys. A 109, 489 (1968).

    Article  ADS  Google Scholar 

  22. R.K. Sheline, Rev. Mod. Phys. 32, 1 (1960).

    Article  ADS  Google Scholar 

  23. G. Alaga, K. Alder, A. Bohr, B.R. Mottelson, Mat. Fys. Medd. Dan. Vid. Selsk 29, 9 (1955).

    Google Scholar 

  24. G. Gneus, W. Greiner, Nucl. Phys. A 171, 449 (1971).

    Article  ADS  Google Scholar 

  25. W.D. Hamilton, K. Kumar, J. Phys. G Nucl. Phys. 5, 1567 (1979).

    Article  ADS  Google Scholar 

  26. K. Kumar, Nuclear models and search for unity in nuclear Physics (Universitetsforlaget, Bergen, 1984).

  27. H. Watanbe et al., Phys. Lett. B 704, 270 (2011).

    Article  ADS  Google Scholar 

  28. J.-P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S. Peru, N. Pillet, G.F. Bertsch, Phys. Rev. C 81, 014303 (2010).

    Article  ADS  Google Scholar 

  29. I. Prochniak, S.G. Rohozinski, J. Phys. G Nucl. Part. Phys. 36, 123101 (2009).

    Article  ADS  Google Scholar 

  30. T. Niksic, P. Ring, D. Vretenar, Yuan Tian, Zhong-yu Ma, Phys. Rev. C 81, 054318 (2010).

    Article  ADS  Google Scholar 

  31. J.B. Gupta, Phys. Rev. C 47, 1489 (1993).

    Article  ADS  Google Scholar 

  32. J.B. Gupta, K. Kumar, Nucl. Phys. A 882, 21 (2012).

    Article  ADS  Google Scholar 

  33. J.B. Gupta, Eur. Phys. J. A 49, 126 (2013).

    Article  ADS  Google Scholar 

  34. J.B. Gupta, Nucl. Phys. A 927, 53 (2014).

    Article  ADS  Google Scholar 

  35. K. Kumar, J.B. Gupta, J.H. Hamilton, Austr. J. Phys. 32, 307 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Gupta.

Additional information

Communicated by D. Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, J.B. Nuclear structure of N = 86 isotones of Ce, Nd, Sm and Gd. Eur. Phys. J. A 50, 176 (2014). https://doi.org/10.1140/epja/i2014-14176-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14176-8

Keywords

Navigation