Skip to main content
Log in

One-neutron knockout from 51–55 Sc

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Results are presented from a one-neutron knockout experiment at relativistic energies of \( \approx 420 A\) MeV on 51-55Sc using the GSI Fragment Separator as a two-stage magnetic spectrometer and the MINIBALL array for gamma-ray detection. Inclusive longitudinal momentum distributions and cross-sections were measured enabling the determination of the contributions corresponding to knockout from the \( \nu p_{1/2}\) , \( \nu p_{3/2}\) , (L = 1 and \( \nu f_{7/2}\) , \( \nu f_{5/2}\) (L = 3 neutron orbitals. The observed L = 1 and L = 3 contributions are compared with theoretical cross-sections using eikonal knockout theory and spectroscopic factors from shell model calculations using the GXPF1A interaction. The measured inclusive knockout cross-sections generally follow the trends expected theoretically and given by the spectroscopic strength predicted from the shell model calculations. However, the deduced L = 1 cross-sections are generally 30-40% higher while the L = 3 contributions are about a factor of two smaller than predicted. This points to a promotion of neutrons from the \( \nu f_{7/2}\) to the \( \nu p_{3/2}\) orbital indicating a weakening of the N = 28 shell gap in these nuclei. While this is not predicted for the phenomenological GXPF1A interaction such a weakening is predicted by recent calculations using realistic low-momentum interactions \( V_{low k}\) obtained by evolving a chiral N3LO nucleon-nucleon potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Sorlin, M.-G. Porquet, Prog. Part. Nucl. Phys. 61, 602 (2008)

    Article  ADS  Google Scholar 

  2. R. Krücken, Contemp. Phys. 52, 101 (2011)

    Article  ADS  Google Scholar 

  3. T. Otsuka, T. Suzuki, R. Fujimoto, H. Grawe, Y. Akaishi, Phys. Rev. Lett. 95, 232502 (2005)

    Article  ADS  Google Scholar 

  4. T. Otsuka, T. Matsuo, D. Abe, Phys. Rev. Lett. 97, 162501 (2006)

    Article  ADS  Google Scholar 

  5. T. Otsuka T. Suzuki, M. Honma, Y. Utsuno, N. Tsunoda, K. Tsukiyama, M. Hjorth-Jensen, Phys. Rev. Lett. 104, 012501 (2010)

    Article  ADS  Google Scholar 

  6. T. Otsuka, T. Suzuki, J.D. Holt, A. Schwenk, Y. Akaishi, Phys. Rev. Lett. 105, 032501 (2010)

    Article  ADS  Google Scholar 

  7. R. Kanungo et al., Phys. Rev. Lett. 102, 152501 (2009)

    Article  ADS  Google Scholar 

  8. C. R. Hoffman et al., Phys. Lett. B 672, 17 (2009)

    Article  ADS  Google Scholar 

  9. T. Otsuka, R. Fujimoto, Y. Utsuno, B.A. Brown, M. Honma, T. Mizusaki, Phys. Rev. Lett. 87, 082502 (2001)

    Article  ADS  Google Scholar 

  10. M. Honma, T. Otsuka, B.A. Brown, T. Mizusaki, Phys. Rev. C 65, 061301 (2002)

    Article  ADS  Google Scholar 

  11. M. Honma, T. Otsuka, B.A. Brown, T. Mizusaki, Phys. Rev. C 69, 034335 (2004)

    Article  ADS  Google Scholar 

  12. E.K. Warburton et al., Phys. Rev. C 41, 1147 (1990)

    Article  ADS  Google Scholar 

  13. A. Poves et al., Nucl. Phys. A 694, 157 (2001)

    Article  ADS  Google Scholar 

  14. E. Caurier et al., Eur. Phys. J. A 15, 145 (2002)

    Article  ADS  Google Scholar 

  15. A. Poves, F. Nowacki, E. Caurier, Phys. Rev. C 72, 047302 (2005)

    Article  ADS  Google Scholar 

  16. S. Bhattacharyya et al., Phys. Rev. C 79, 014313 (2009)

    Article  ADS  Google Scholar 

  17. T.R. Rodríguez, J.L. Egido, Phys. Rev. Lett. 99, 062501 (2007)

    Article  ADS  Google Scholar 

  18. J.I. Prisciandaro et al., Phys. Lett. B 510, 17 (2001)

    Article  ADS  Google Scholar 

  19. R.V.F. Janssens et al., Phys. Lett. B 546, 55 (2002)

    Article  ADS  Google Scholar 

  20. P.F. Mantica et al., Phys. Rev. C 67, 014311 (2003)

    Article  ADS  Google Scholar 

  21. S.N. Liddick et al., Phys. Rev. C 70, 064303 (2004)

    Article  ADS  Google Scholar 

  22. B. Fornal et al., Phys. Rev. C 70, 064304 (2004)

    Article  ADS  Google Scholar 

  23. D.-C. Dinca et al., Phys. Rev. C 71, 041302(R) (2005)

    Article  ADS  Google Scholar 

  24. B. Fornal et al., Phys. Rev. C 72, 044315 (2005)

    Article  ADS  Google Scholar 

  25. A. Bürger et al., Phys. Lett. B 622, 29 (2005)

    Article  ADS  Google Scholar 

  26. A. Gade et al., Phys. Rev. C 73, 037309 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Gade et al., Phys. Rev. C 74, 021302(R) (2006)

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Gade et al., Phys. Rev. C 74, 047302 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  29. S. Zhu et al., Phys. Lett. B 650, 135 (2007)

    Article  ADS  Google Scholar 

  30. P. Mantica et al., Phys. Rev. C 77, 014313 (2008)

    Article  ADS  Google Scholar 

  31. S. Zhu et al., Phys. Rev. C 80, 024318 (2009)

    Article  ADS  Google Scholar 

  32. P. Maierbeck et al., Phys. Lett. B 675, 22 (2009)

    Article  ADS  Google Scholar 

  33. J.D. Holt et al., J. Phys. G 39, 085111 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  34. A.T. Gallant et al., Phys. Rev. Lett. 109, 032506 (2012)

    Article  ADS  Google Scholar 

  35. H. Geissel et al., Nucl. Instrum. Methods B 70, 286 (1992)

    Article  ADS  Google Scholar 

  36. B. Sitar et al., Nucl. Instrum. Methods A 419, 503 (1998)

    Article  ADS  Google Scholar 

  37. J. Eberth et al., Progr. Part. Nucl. Phys. 46, 389 (2001)

    Article  ADS  Google Scholar 

  38. N. Iwasa et al., Nucl. Instrum. Methods B 126, 284 (1997)

    Article  ADS  Google Scholar 

  39. H. Weick, private communication

  40. P.G. Hansen, J.A. Tostevin, Annu. Rev. Nucl. Part. Sci. 53, 219 (2003)

    Article  ADS  Google Scholar 

  41. B.A. Brown, Phys. Rev. C 58, 220 (1998)

    Article  ADS  Google Scholar 

  42. L. Ray, Phys. Rev. C 20, 1857 (1979)

    Article  ADS  Google Scholar 

  43. A. Gade et al., Phys. Rev. C 77, 044306 (2008)

    Article  ADS  Google Scholar 

  44. B.A. Brown, P.G. Hansen, B.M. Sherrill, J.A. Tostevin, Phys. Rev. C 65, 061601(R) (2002)

    Article  ADS  Google Scholar 

  45. Georges Audi, Wang Meng, private communication (2011)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Äystö

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwertel, S., Maierbeck, P., Krücken, R. et al. One-neutron knockout from 51–55 Sc. Eur. Phys. J. A 48, 191 (2012). https://doi.org/10.1140/epja/i2012-12191-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2012-12191-5

Keywords

Navigation