Skip to main content
Log in

Search for \({\rm\Theta}(1540)^ + \) in the exclusive proton-induced reaction \({\rm p + {C(N)\to \Theta^ + \bar{K}^0 + {C}(N)}}\) at the energy of 70 GeV

  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

A search for narrow \(\Theta(1540)^ + \), a candidate for pentaquark baryon with positive strangeness, has been performed in an exclusive proton-induced reaction \(p + \mathrm{C}(N)\to \Theta^ + \bar{K}^0 + \mathrm{C}(N)\) on carbon nuclei or quasifree nucleons at E beam = 70 GeV (\(\sqrt{s} = 11.5\) GeV) studying nK + , pK S 0 and pK L 0 decay channels of \(\Theta(1540)^ + \) in four different final states of the \(\Theta^ + \bar{K}^0\) system. In order to assess the quality of the identification of the final states with neutron or K 0 L , we reconstructed \(\Lambda(1520)\to nK^0_S\) and \(\phi\to K^0_LK^0_S\) decays in the calibration reactions \(p + \mathrm{C}(N)\to \Lambda(1520)K^ + + \mathrm{C}(N)\) and \(p + \mathrm{C}(N)\to p\phi + \mathrm{C}(N)\). We found no evidence for narrow pentaquark peak in any of the studied final states and decay channels. Assuming that the production characteristics of the \(\Theta^ + \bar{K^0}\) system are not drastically different from those of the \(\Lambda(1520)K^ + \) and \(p\phi\) systems, we established upper limits on the cross-section ratios \(\sigma(\Theta^ + \bar{K}^0) / \sigma(\Lambda(1520)K^ + ) < \) 0.02 and \(\sigma(\Theta^ + \bar{K}^0) / \sigma(p\phi ) < \) 0.15 at 90% CL and a preliminary upper limit for the forward hemisphere cross-section \(\sigma(\Theta^ + \bar{K}^0) < \) 30 nb/nucleon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. LEPS Collaboration (T. Nakano et al. ), Phys. Rev. Lett. 91, 012002 (2003), hep-ex/0301020.

    Google Scholar 

  2. DIANA Collaboration (V.V. Barmin et al. ), Phys. At. Nucl. 66, 1715 (2003) (Yad. Fiz. 66, 1763 (2003)), hep-ex/0304040.

    Article  Google Scholar 

  3. CLAS Collaboration (S. Stepanyan et al. ), Phys. Rev. Lett. 91, 252001 (2003), hep-ex/0307018.

    Article  Google Scholar 

  4. SAPHIR Collaboration (J. Barth et al. ), hep-ex/0307083.

  5. A.E. Asratyan, A.G. Dolgolenko, M.A. Kubantsev, hep-ex/0309042.

  6. CLAS Collaboration (V. Kubarovsky et al. ), Phys. Rev. Lett. 92, 032001 (2004); 92, 049902 (2004)(E), hep-ex/0311046.

    Article  Google Scholar 

  7. R. Togoo et al. , Proc. Mong. Acad. Sci. 4, 2 (2003).

    Google Scholar 

  8. HERMES Collaboration (A. Airapetian et al. ), Phys. Lett. B 585, 213 (2004), hep-ex/0312044.

    Article  Google Scholar 

  9. SVD Collaboration (A. Aleev et al. ), hep-ex/0401024.

  10. COSY-TOF Collaboration (M. Abdel-Bary et al. ), hep-ex/0403011.

  11. P.Z. Aslanyan, V.N. Emelyanenko, G.G. Rikhkvitzkaya, hep-ex/0403044.

  12. ZEUS Collaboration (S. Chekanov et al. ), hep-ex/0403051.

  13. A.R. Dzierba, D. Krop, M. Swat, S. Teige, A.P. Szczepaniak, Phys. Rev. D 69, 051901 (2004), hep-ph/0311125.

    Article  Google Scholar 

  14. J.L. Rosner, Phys. Rev. D 69, 094014 (2004), hep-ph/0312269.

    Article  Google Scholar 

  15. M. Zavertyaev, hep-ph/0311250.

  16. Q. Zhao, F.E. Close, hep-ph/0404075.

  17. E. Klempt, hep-ph/0404270.

  18. BES Collaboration (J.Z. Bai et al. ), hep-ex/0402012.

  19. HERA-B Collaboration (K.T. Knopfle, M. Zavertyaev, T. Zivko), hep-ex/0403020.

  20. C. Pinkenburg (for the PHENIX Collaboration, nucl-ex/0404001.

  21. P. Hansen (for ALEPH Collaboration), talk at DIS 2004, http://www.saske.sk/dis04/talks/C/hansen.pdf.

  22. Throsten Wengler (reporting DELPHI Collaboration results), talk at Moriond ‘04 QCD, http://moriond.in2p3. fr/QCD/2004/WednesdayAfternoon/Wengler.pdf.

  23. M. Karliner, H.J. Lipkin, hep-ph/0405002.

  24. SPHINX Collaboration (M.Y. Balats et al. ), Z. Phys. C 61, 223 (1994); SPHINX Collaboration (V.A. Dorofeev et al. ), Phys. At. Nucl. 57, 227 (1994) (Yad. Fiz. 57, 241 (1994)).

    Google Scholar 

  25. SPHINX Collaboration (D.V. Vavilov et al. ), Phys. At. Nucl. 57, 1970 (1994) (Yad. Fiz. 57, 2046 (1994)).

    Google Scholar 

  26. SPHINX Collaboration (M.Y. Balats et al. ), Z. Phys. C 61, 399 (1994).

    Google Scholar 

  27. SPHINX Collaboration (S.V. Golovkin et al. ), Eur. Phys. J. A 5, 409 (1999).

    Google Scholar 

  28. SPHINX Collaboration (D.V. Vavilov et al. ), Phys. At. Nucl. 63, 1391 (2000) (Yad. Fiz. 63, 1469 (2000).

    Article  Google Scholar 

  29. L.G. Landsberg, Phys. Rep. 320, 223 (1999).

    Article  Google Scholar 

  30. SPHINX Collaboration (Y.M. Antipov et al. ), Phys. At. Nucl. 65, 2070 (2002) (Yad. Fiz. 65, 2131 (2002).

    Article  Google Scholar 

  31. D. Diakonov, V. Petrov, M.V. Polyakov, Z. Phys. A 359, 305 (1997), hep-ph/9703373.

    Article  Google Scholar 

  32. H. Weigel, Eur. Phys. J. A 2, 391 (1998), hep-ph/9804260.

    Article  Google Scholar 

  33. Y. Antipov et al. , Nucl. Phys. Proc. Suppl. 44, 206 (1995).

    Article  Google Scholar 

  34. A. Kozhevnikov, V. Kubarovsky, V. Molchanov, V. Rykalin, V. Solyanik, Nucl. Instrum. Methods A 433, 164 (1999).

    Article  Google Scholar 

  35. CERN-Heidelberg-Padua-Paris-Rome-Serpukhov-Trieste Collaboration (B. Powell et al. ), Nucl. Instrum. Methods 198, 217 (1982).

    Article  Google Scholar 

  36. Y.M. Antipov et al. , Nucl. Instrum. Methods A 295, 81 (1990).

    Google Scholar 

  37. S.I. Bityukov et al. , IFVE-94-101.

  38. Particle Data Group Collaboration (K. Hagiwara et al. ), Phys. Rev. D 66, 010001 (2002).

    Article  Google Scholar 

  39. M.W. Arenton, D.S. Ayres, R. Diebold, E.N. May, L. Nodulman, J.R. Sauer, A.B. Wicklund, Phys. Rev. D 25, 22 (1982).

    Article  Google Scholar 

  40. SPHINX Collaboration (S.V. Golovkin et al. ), Z. Phys. A 359, 435 (1997).

    Article  Google Scholar 

  41. V.R. Krastev et al. , JINR-P1-88-31.

  42. R.E. Ansorge, J.R. Carter, J.A. Charlesworth, W.W. Neale, J.G. Rushbrooke, Phys. Rev. D 10, 32 (1974).

    Article  Google Scholar 

  43. W. Liu, C.M. Ko, Phys. Rev. C 68, 045203 (2003), nucl-th/0308034.

    Article  Google Scholar 

  44. S. Nussinov, hep-ph/0307357; R.W. Gothe, S. Nussinov, hep-ph/0308230; R.A. Arndt, I.I. Strakovsky, R.L. Workman, Phys. Rev. C 68, 042201 (2003), nucl-th/0308012, nucl-th/0311030; J. Haidenbauer, G. Krein, hep-ph/0309243; R.N. Cahn, G.H. Trilling, hep-ph/0311245; A. Casher, S. Nussinov, Phys. Lett. B 578, 124 (2004), hep-ph/0309208; A. Sibirtsev, J. Haidenbauer, S. Krewald, U.G. Meissner, hep-ph/0405099.

    Article  Google Scholar 

  45. D. Christian, E690 Collaboration, Quarks and Nuclear Physics 2004, Bloomington, Indiana, May 23-28, 2004, http://www.qnp2004.org/.

Download references

Author information

Consortia

Additional information

Communicated by V.V. Anisovich

Received: 16 July 2004, Published online: 21 September 2004

PACS:

12.39.Mk Glueball and nonstandard multi-quark/gluon states - 13.85.Rm Limits on production of particles - 14.20.-c Baryons (including antiparticles) - 25.40.-h Nucleon-induced reactions

Rights and permissions

Reprints and permissions

About this article

Cite this article

The SPHINX Collaboration. Search for \({\rm\Theta}(1540)^ + \) in the exclusive proton-induced reaction \({\rm p + {C(N)\to \Theta^ + \bar{K}^0 + {C}(N)}}\) at the energy of 70 GeV. Eur. Phys. J. A 21, 455–468 (2004). https://doi.org/10.1140/epja/i2004-10062-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2004-10062-4

Keywords

Navigation