Skip to main content
Log in

Links between heavy ion and astrophysics

  • Dynamics and Thermodynamics with Nuclear Degrees of Freedom
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

Heavy-ion experiments provide important data to test astrophysical models. The high-density equation of state can be probed in HI collisions and applied to the hot protoneutron star formed in core collapse supernovae. The parity radius experiment (PREX) aims to accurately measure the neutron radius of 208Pb with parity-violating electron scattering. This determines the pressure of neutron-rich matter and the density dependence of the symmetry energy. Competition between nuclear attraction and Coulomb repulsion can form exotic shapes called nuclear pasta in neutron star crusts and supernovae. This competition can be probed with multifragmentation HI reactions. We use large-scale semiclassical simulations to study nonuniform neutron-rich matter in supernovae. We find that the Coulomb interactions in astrophysical systems suppress density fluctuations. As a result, there is no first-order liquid-vapor phase transition. Finally, the virial expansion for low-density matter shows that the nuclear vapor phase is complex with significant concentrations of alpha particles and other light nuclei in addition to free nucleons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.B. Tsang, Phys. Rev. Lett. 92, 062701 (2004).

    Article  ADS  Google Scholar 

  2. P. Danielewicz, R. Lacey, W.G. Lynch, Science 298, 1592 (2002).

    Article  ADS  Google Scholar 

  3. C. Sturm, Phys. Rev. Lett. 86, 39 (2001).

    Article  ADS  Google Scholar 

  4. J.M. Lattimer, M. Prakash, Science 304, 536 (2004).

    Article  ADS  Google Scholar 

  5. D.J. Niece, astro-ph/0508050.

  6. R.E. Rutledge, Astrophys. J. 559, 1054 (2001).

    Article  ADS  Google Scholar 

  7. S. Woosley, H.T. Janka, Nature Phys. 1, 147 (2005).

    Article  ADS  Google Scholar 

  8. T.W. Donnelly, Nucl. Phys. A 503, 589 (1989).

    Article  ADS  Google Scholar 

  9. C.J. Horowitz, Phys. Rev. C 57, 3430 (1998).

    Article  ADS  Google Scholar 

  10. http://hallaweb.jlab.org/parity/prex.

  11. C.J. Horowitz, Phys. Rev. C 63, 025501 (2001).

    Article  ADS  Google Scholar 

  12. B. Alex Brown, Phys. Rev. Lett. 85, 5296 (2000).

    Article  ADS  Google Scholar 

  13. C.J. Horowitz, J. Piekarewicz, Phys. Rev. Lett. 86, 5647 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  14. C.J. Horowitz, J. Piekarewicz, Phys. Rev. C 66, 055803 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  15. Bao-An Li, A.W. Steiner, nucl-th/0511064.

  16. M. Di Toro, S.J. Yennello, Bao-An Li, Isospin flows, this topical issue.

  17. M. Colonna, M.B. Tsang, Isotopic compositions and scalings, this topical issue.

  18. A.W. Steiner, Phys. Rep. 411, 325 (2005).

    Article  ADS  Google Scholar 

  19. D.G. Ravenhall, C.J. Pethick, J.R. Wilson, Phys. Rev. Lett. 50, 2066 (1983).

    Article  ADS  Google Scholar 

  20. G. Toulouse, Commun. Phys. 2, 115 (1977)

    Google Scholar 

  21. R. Liebmann, Statistical Mechanics of Periodic Frustrated Ising Systems, Vol. 251 (Springer Verlag, Berlin, 1986).

  22. C.J. Camacho, Phys. Rev. Lett. 77, 2324 (1996).

    Article  ADS  Google Scholar 

  23. J.A. Pons, Mon. Not. R. Astron. Soc. 363, 121 (2005).

    Article  ADS  Google Scholar 

  24. C.J. Horowitz, M.A. Perez-Garcia, J. Piekarewicz, Phys. Rev. C 69, 045804 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  25. A.S. Botvina, I.N. Mishustin, Phys. Rev. C 72, 048801 (2005).

    Article  ADS  Google Scholar 

  26. Horst Mueller, Brian D. Serot, Nucl. Phys. A 606, 508 (1996).

    Article  ADS  Google Scholar 

  27. Gentaro Watanabe, Hidetaka Sonoda, cond-mat/0502515.

  28. C.J. Horowitz, M.A. Perez-Garcia, J. Carriere, D.K. Berry, J. Piekarewicz, Phys. Rev. C 70, 065806 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  29. A.S. Botvina, I.N. Mishustin, Phys. Lett. B 584, 233 (2004).

    Article  ADS  Google Scholar 

  30. C.J. Horowitz, M.A. Perez-Garcia, D.K. Berry, J. Piekarewicz, Phys. Rev. C 72, 035801 (2005).

    Article  ADS  Google Scholar 

  31. J.B. Natowitz, Phys. Rev. Lett. 89, 212701 (2002)

    Article  ADS  Google Scholar 

  32. C.J. Horowitz, A. Schwenk, Phys. Lett. B 638, 153 (2006) nucl-th/0507064.

    Article  ADS  Google Scholar 

  33. C.J. Horowitz, A. Schwenk, Nucl. Phys. A 776, 55 (2006) nucl-th/0507033.

    Article  ADS  Google Scholar 

  34. S. Iyengar, J. Chem. Phys. 123, 084309 (2005).

    Article  Google Scholar 

  35. J. Margueron, Phys. Rev. C 70, 028801 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Horowitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horowitz, C.J. Links between heavy ion and astrophysics. Eur. Phys. J. A 30, 303–310 (2006). https://doi.org/10.1140/epja/i2006-10124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2006-10124-7

PACS.

Navigation