Skip to main content
Log in

Controlling Marangoni flow directionality: patterning nano-materials using sessile and sliding volatile droplets

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Controlling the droplet shape and the corresponding deposition patterns is pivotal in a wide range of processes and applications based on surface phenomena, such as self-assembly of different types of nanomaterials and fabrication of functional electronic devices. In this paper we study different flow regimes and deposition patterns from volatile sessile droplets and droplets sliding over inclined solid substrates. The directionality and intensity of the Marangoni flow was controlled by vapor composition in a sealed chamber enclosing the evaporating droplets. Two types of volatile droplets are investigated: single component droplets and binary solution droplets. Binary solution droplets can exhibit either inward or outward Marangoni soluto-capillary flow, depending on a surface tension dependence on the concentration of the fast evaporating component. We carried out a detailed experimental study of the micro-rivulet (μ-R) regime in different binary solutions. The μ-R formation in a certain range of Ca proved to be a universal phenomenon subject to the occurrence of inward Marangoni flow. We propose a simplified mathematical model for the shape of μ-R based on the lubrication approximation. The resulting μ-R profile shows a good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Liu, W. Xu, W. Tan, X. Zhu, J. Wang, J. Peng, Y. Cao, J. Colloid Interface Sci. 465, 106 (2016)

    Article  Google Scholar 

  2. Y. Aleeva, B. Pignataro, J. Mater. Chem. C 2, 6436 (2014)

    Article  Google Scholar 

  3. E. Menard, M.A. Meitl, Y. Sun, J.U. Park, D.J.L. Shir, , Y.S. Nam, S. Jeon, J.A. Rogers, Chem. Rev. 107, 1117 (2007)

    Article  Google Scholar 

  4. S.S. Kim, S.I. Na, J. Jo, G. Tae, D.Y. Kim, Adv. Mater. 19, 4410 (2007)

    Article  Google Scholar 

  5. F.C. Krebs, Sol. Energy Mater. Sol. Cells 93, 465 (2009)

    Article  Google Scholar 

  6. K.D. Bardin, U.S. Patent 4, 311 (1977)

    Google Scholar 

  7. J. Park, J. Moon, Langmuir 22, 3506 (2006)

    Article  Google Scholar 

  8. R. Parashkov, E. Becker, T. Riedl, H.H. Johannes, W. Kowalsky, Proc. IEEE 93, 1321 (2005)

    Article  Google Scholar 

  9. B.Y. Ahn, E.B. Duoss, M.J. Motala, X. Guo, S.I. Park, Y. Xiong, J. Yoon, R.G. Nuzzo, J.A. Rogers, J.A. Lewis, Science 323, 1590 (2009)

    Article  ADS  Google Scholar 

  10. R. Bhardwaj, X. Fang, D. Attinger, New J. Phys. 11, 075020 (2009)

    Article  ADS  Google Scholar 

  11. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997)

    Article  ADS  Google Scholar 

  12. R.G. Picknett, R. Bexon, J. Colloid Interface Sci. 61, 336 (1977)

    Article  Google Scholar 

  13. K. Sefiane, J. Bionic Eng. 7, S82 (2010)

    Article  Google Scholar 

  14. A. Askounis, K. Sefiane, V. Koutsos, M.E. Shanahan, Colloids Surf. A 441, 855 (2014)

    Article  Google Scholar 

  15. L.E. Scriven, C.V. Sternling, Nature 187, 186 (1960)

    Article  ADS  Google Scholar 

  16. R. Vuilleumier, V. Ego, L. Neltner, A.M. Cazabat, Langmuir 11, 4117 (1995)

    Article  Google Scholar 

  17. X. Fanton, A.M. Cazabat, Langmuir 14, 2554 (1998)

    Article  Google Scholar 

  18. H. Hu, R.G. Larson, J. Phys. Chem. B 110, 7090 (2006)

    Article  Google Scholar 

  19. D. Pesach, A. Marmur, Langmuir 3, 519 (1987)

    Article  Google Scholar 

  20. G. Konvalina, A. Leshansky, H. Haick, Adv. Funct. Mater. 25, 2411 (2015)

    Article  Google Scholar 

  21. M. Segev Bar, G. Konvalina, H. Haick, Adv. Mater. 27, 1779 (2015)

    Article  Google Scholar 

  22. L.M. Hocking, J. Fluid Mech. 211, 373 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  23. J.H. Snoeijer, N.L. Grand-Piteira, L. Limat, H.A. Stone, J. Eggers, Phys. Fluids. 19, 042104 (2007)

    Article  ADS  Google Scholar 

  24. C. Paterson, S.K. Wilson, B.R. Duffy, Eur. J. Mech. B 41, 94 (2013)

    Article  Google Scholar 

  25. F.D. Dos Santos, T. Ondarcuhu, Phys. Rev. Lett. 75, 2972 (1995)

    Article  ADS  Google Scholar 

  26. T. Podgorski, J.M. Flesselles, L. Limat, Phys. Rev. Lett. 87, 036102 (2001)

    Article  ADS  Google Scholar 

  27. S. Engelnkemper, M. Wilczek, S.V. Gurevich, U. Thiele, Phys. Rev. Fluids 1, 073901 (2016)

    Article  ADS  Google Scholar 

  28. A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997)

    Article  ADS  Google Scholar 

  29. M. Brust, M. Walker, D. Bethell, D.J Schiffrin, R. Whyman, J. Chem. Soc. Chem. Commun. 7, 801 (1994)

    Article  Google Scholar 

  30. O. Assad, A.M. Leshansky, B.Wang, T. Stelzner, S. Christiansen, H. Haick, ACS Nano 6, 7402 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Leshansky.

Electronic supplementary material

Supplementary data

PDF file

Supplementary data

AVI file

Supplementary data

AVI file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abo Jabal, M., Homede, E., Pismen, L.M. et al. Controlling Marangoni flow directionality: patterning nano-materials using sessile and sliding volatile droplets. Eur. Phys. J. Spec. Top. 226, 1307–1324 (2017). https://doi.org/10.1140/epjst/e2016-60404-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60404-x

Navigation