Skip to main content
Log in

Momentum disequilibrium and quantum entanglement of Rydberg multidimensional states

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The quantum entanglement of the two components of a hydrogenic system with dimensionality \(D\ge 2\) is investigated for the ground and excited states from first principles, that is, in terms of the Coulomb potential parameters (the dimensionality and the nuclear charge) and the state’s hyperquantum numbers. To quantify this multidimensional entanglement, we use an heuristic quantifier and a practical genuine entanglement measure which are closely related to the variance and disequilibrium of the system in momentum space, respectively. Then, our interest is focused on the multidimensional entanglement of highly excited (Rydberg) states, obtaining at the leading order a simple dependence on the dimensionality and the principal hyperquantum number n which characterizes the state. Applications to various specific low-lying and high-lying hydrogenic states are shown. In particular, it is rigorously shown that the momentum disequilibrium and the entanglement for the Rydberg multidimensional states follow a scaling law of \(n^2\log \,n\) and \(n^{2(D-1)}\) type for two-dimensional and D-dimensional (\(D>2\)) systems, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Belli, R. Bonsignori, G. D’Auria, L. Fant, M. Martini, S. Peirone, S. Donadi, A. Bassi, Phys. Rev. A 94, 012108 (2016)

  2. C. Marletto, V. Vedral, Phys. Rev. Lett. 119, 240402 (2017)

    Article  ADS  Google Scholar 

  3. R.J. Marshman, A. Mazumdar, S. Bose, Phys. Rev. A 101, 052110 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  4. L. Amico, L. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  Google Scholar 

  5. M. Tichy, F. Mintert, A. Buchleitner, J. Phys. B At. Mol. Opt. Phys. 44, 192001 (2011)

    Article  ADS  Google Scholar 

  6. R. Jozsa, N. Linden, Proc. R. Soc. Lond. 459, 2011 (2003)

    Article  ADS  Google Scholar 

  7. T. Schaetz, M.D. Barrett, D. Leibfried, J. Chiaverini, J. Britton, W.M. Itano, J.D. Jost, C. Langer, D.J. Wineland, Phys. Rev. Lett. 93, 040505 (2004)

    Article  ADS  Google Scholar 

  8. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, A. Zeilinger, Phys. Rev. Lett. 84, 4729 (2000)

    Article  ADS  Google Scholar 

  9. H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macri, T. Lahaye, A. Browaeys, Nature London 534, 667 (2016)

    Article  ADS  Google Scholar 

  10. H. Levine, A. Keesling, A. Omran, H. Bernien, S. Schwartz, A.S. Zibrov, M. Endres, M. Greiner, V. Vuletic, M.D. Lukin, Phys. Rev. Lett. 121, 123603 (2018)

    Article  ADS  Google Scholar 

  11. C.L. Degen, F. Reinhard, P. Cappellaro, Rev. Mod. Phys. 89, 035002 (2017)

    Article  ADS  Google Scholar 

  12. P. Tommasini, E. Timmermans, A. de Toledo Piza, Am. J. Phys. 66, 881 (1998)

  13. J.P. Coe, I. D’Amico, J. Phys.: Conf. Ser. 254, 012010 (2010)

  14. R.J. Yá\(\ddot{{\rm n}}\)ez, A.R. Plastino, J.S. Dehesa, Eur. Phys. J. D 56, 141 (2010)

  15. D. Manzano, A.R. Plastino, J.S. Dehesa, T. Koga, J. Phys. A Math. Theor. 43, 275301 (2010)

    Article  ADS  Google Scholar 

  16. P.A. Bouvrie, A.P. Majtey, A.R. Plastino, P. Sánchez-Moreno, J.S. Dehesa, Eur. Phys. J. D 66, 15 (2012)

    Article  ADS  Google Scholar 

  17. S. Qvarfort, S. Bose, A. Serafini, New J. Phys. 22, 093062 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  18. J.S. Dehesa, T. Koga, R.J. Yáñez, A.R. Plastino, R.O. Esquivel, J. Phys. B At. Mol. Opt. Phys. 45, 015504 (2012)

    Article  ADS  Google Scholar 

  19. G. Benenti, S. Siccardi, G. Strini, Eur. Phys. J. D 67, 83 (2013)

    Article  ADS  Google Scholar 

  20. Y.-C. Lin, C.-Y. Lin, Y.K. Ho, Phys. Rev. A 87, 022316 (2013)

    Article  ADS  Google Scholar 

  21. C.H. Lin, Y.K. Ho, Phys. Lett. A 378, 2861 (2014)

    Article  ADS  Google Scholar 

  22. I.V. Toranzo, A.R. Plastino, P. Sánchez-Moreno, J.S. Dehesa, J. Phys. A Math. Theor. 48, 475302 (2015)

    Article  ADS  Google Scholar 

  23. R.O. Esquivel, A.R. Plastino, J.S. Dehesa, N. Flores-Gallegos, J.C. Angulo, J. Antolin, M. Molina-Espíritu, J. Phys. B At. Mol. Opt. Phys. 44, 175101 (2011)

    Article  ADS  Google Scholar 

  24. L. Ding, C. Schilling, J. Chem. Theory Comput. 16, 4159 (2020)

    Article  Google Scholar 

  25. M. Molina-Espíritu, S. López-Rosa, R.O. Esquivel, J.S. Dehesa, J. Chem. Theory Comput. 11(11), 5144 (2015)

    Article  Google Scholar 

  26. G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  27. S.J. Gu, S.S. Deng, Y.Q. Li, H.Q. Lin, Phys. Rev. Lett. 93, 086402 (2004)

    Article  ADS  Google Scholar 

  28. K. Boguslawski, P. Tecmer, G. Barcza, O. Legeza, M. Reiher, J. Chem. Theory Comput. 9, 2959 (2013)

    Article  Google Scholar 

  29. R.O. Esquivel, M. Molina-Espíritu, A.R. Plastino, J.S. Dehesa, Int. J. Quantum Chem. 115, 1417 (2015)

    Article  Google Scholar 

  30. S. Szalay, G. Barcza, T. Szilvasi, L. Veis, O. Legeza, Sci. Rep. 7, 2237 (2017)

    Article  ADS  Google Scholar 

  31. C.L. Benavides-Riveros, I.V. Toranzo, J.S. Dehesa, J. Phys. B At. Mol. Opt. Phys. 47, 195503 (2014)

    Article  ADS  Google Scholar 

  32. P.A. Bouvrie, A.P. Majtey, M.C. Tichy, J.S. Dehesa, A.R. Plastino, Eur. Phys. J. D 68, 346 (2014)

    Article  ADS  Google Scholar 

  33. S. Szalay, M. Pfeffer, V. Murg, G. Barcza, F. Verstraete, R. Schneider, O. Legeza, Int. J. Quantum Chem. 115, 1342 (2015)

    Article  Google Scholar 

  34. D.S. Ding, W. Zhang, S. Shi, Z.Y. Zhou, Y. Li et al., Light Sci. Appl. 5, e16157 (2016)

    Article  Google Scholar 

  35. V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino et al., Nat Commun 6, 7706 (2015)

  36. M. Erhard, R. Fickler, M. Krenn, A. Zeilinger Light Sci. Appl. 7, 17146 (2018)

    Article  Google Scholar 

  37. F. Zhu, M. Tyler, N.H. Valencia, M. Malik, J. Leach, Is high-dimensional photonic entanglement robust to noise?. arXiv:1908.08943v2 [quant-ph] 31 July 2020

  38. E. Kawakami, A. Elarabi, D. Konstantinov, Relaxation of the Excited Rydberg States of Surface Electrons on Liquid Helium, arXiv:2009.11502v1, 24 Sept. 2020

  39. K. Andrew, J. Supplee, Am. J. Phys. 58, 1177 (1990)

    Article  ADS  Google Scholar 

  40. M.M. Nieto, Am. J. Phys. 47(12), 1067 (1979)

    Article  ADS  Google Scholar 

  41. R.J. Yáñez, W. Van Assche, J.S. Dehesa, Phys. Rev. A 50, 3065 (1994)

    Article  ADS  Google Scholar 

  42. V.A. Kostelecky, N. Russell, J. Math. Phys. 37, 2166 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  43. V. Aquilanti, S. Cavalli, C. Coletti, Chem. Phys. 214, 1 (1997)

    Article  Google Scholar 

  44. F. Burgbacher, C. Lammerzahl, A. Macías, J. Math. Phys. 40, 625 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  45. R. Szmytkowski, Ann. Phys. Berlin 524(6–7), 345–352 (2012)

    Article  ADS  Google Scholar 

  46. J.S. Dehesa, S. Lopez-Rosa, A. Martinez-Finkelshtein, R.J. Yáñez, Int. J. Quantum Chem. 110, 1529 (2010)

    Article  Google Scholar 

  47. C. Coletti, C. Calderini, V. Aquilanti, Adv. Quantum Chem. 67, 73 (2013)

    Article  Google Scholar 

  48. F. Caruso, J. Martins, V. Oguri, Phys. Lett. A 377, 694 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  49. M. Bures, Quantum Physics with Extra Dimensions, Doctoral dissertation (University of Brno, Brno, Chequia, 2015). See chapter 9

  50. S.R. Lundeen, Adv. At. Mol. Opt. Phys. 52, 161–208 (2005)

    Article  ADS  Google Scholar 

  51. S.R. Lundeen, C.W. Fehrenbach, Phys. Rev. A 75, 032523 (2007)

    Article  ADS  Google Scholar 

  52. J. Perez-Rios, M.T. Eiles, C.H. Greene, J. Phys. B At. Mol. Opt. Phys. 49, 14LT01 (2016)

    Article  Google Scholar 

  53. F. Pokorny, C. Zhang, G. Higgins, M. Hennrich, Magic trapping of a Rydberg ion with a diminished static polarizability. arXiv:2005.12422v1 [physics.atom-ph] 25 May 2020

  54. K.J.B. Ghosh, S. Kais, D.R. Herschbach, Front. Phys. 8, 331 (2020)

    Article  Google Scholar 

  55. M. Pawlak, H.R. Sadeghpour, Phys. Rev. A 101, 052510 (2020)

    Article  ADS  Google Scholar 

  56. C.S. Adams, J.D. Pritchard, J.P. Shaffer, J. Phys. B At. Mol. Opt. Phys 53, 012002 (2020)

    Article  ADS  Google Scholar 

  57. R. González-Férez, L.G. Marcassa, J. Shafer (Eds), Special Issue on Interacting Rydberg Atoms. J. Phys. B At. Mol. Opt. Phys., 53 (2020)

  58. M. Saffman, T.G. Walker, K. Mollmer, Rev. Mod. Phys. 82, 2313 (2010)

    Article  ADS  Google Scholar 

  59. X. Wu et al, Chinese Phys. B (2021). Accepted

  60. T.F. Gallagher, Rydberg Atoms (Cambridge Univ. Press, New York, 2005)

    Google Scholar 

  61. N. Sibalic, C.S. Adams, Rydberg Phys. (IOP, Bristol, 2018)

    Book  Google Scholar 

  62. M.M. Nieto, Phys. Rev. A 61, 034901 (2000)

    Article  ADS  Google Scholar 

  63. M.I. Dykman, P.M. Platzman, P. Seddigard, Phys. Rev. B 67, 155402 (2003)

    Article  ADS  Google Scholar 

  64. S.S. Li, J.B. Xia, Phys. Lett. A 366, 120 (2007)

    Article  ADS  Google Scholar 

  65. P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductors Nanostructures (Wiley, New York, 2005)

    Book  Google Scholar 

  66. Z. Ji, P. Fan, H. Zhang, Entanglement swapping of \(d\)-dimension bipartite and multi-particle entangled states, ArXiv:2009.02555v2 [quant-ph] 16 October 2020

  67. V. Aquilanti, J. Avery, Adv. Quantum Chem. 71, 39 (2001)

    Google Scholar 

  68. E. Witten, Phys. Today 33, 38 (1980)

    Article  Google Scholar 

  69. G. Amelino-Camelia, J. Kowaslki-Glikman, Planck Scale Effects in Astrophysics and Cosmology (Springer, Berlin, 2005)

    MATH  Google Scholar 

  70. C. Itzykson, J.B. Zuber, Quantum Field Theory (Dover, New York, 2006)

    MATH  Google Scholar 

  71. S.H. Dong, Wave Equations in Higher Dimensions (Springer, Berlin, 2011)

    Book  MATH  Google Scholar 

  72. G. ’t Hooft, The quantum black hole as a hydrogen atom: Microstates Without Strings Attached. ArXiv:1605.05119 [gr-qc] (2016)

  73. C. Corda, F. Feleppa, The quantum black hole as a gravitational hydrogen atom. Arxiv:1912.06478v5 [gr-qc] June 5, 2020

  74. M.O. Terra Cunha, J.A. Dunningham, V. Vedral, Proc. R. Soc. A. 463, 2277 (2007)

    Article  ADS  Google Scholar 

  75. A.C. de la Torre, D. Goyeneche, L. Leitao, Eur. J. Phys. 31, 325 (2010)

    Article  Google Scholar 

  76. G. Vidal, J. Mod. Opt. 47, 355 (2000)

    Article  ADS  Google Scholar 

  77. F. Buscemi, P. Bordone, A. Bertoni, Phys. Rev. A 75, 032301 (2007)

    Article  ADS  Google Scholar 

  78. M.C. Tichy, P.A. Bouvrie, K. Mollmer, Phys. Rev. Lett. 109, 260403 (2012)

    Article  ADS  Google Scholar 

  79. A.R. Plastino, D. Manzano, J.S. Dehesa, Europhys. Lett. 86, 20005 (2009)

    Article  ADS  Google Scholar 

  80. A.P. Majtey, A.R. Plastino, J.S. Dehesa, J. Phys. A 45, 115309 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  81. A. Rényi, in Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, ed. by J. Neyman, (University of California Press, Berkeley, 1961), pp. 547-561

  82. N. Leonenko, L. Pronzato, V. Savani, Ann. Stat. 40, 2153 (2008)

    Google Scholar 

  83. C. Tsallis, J. Stat. Phys. 52(1988), 479487 (1988)

    Google Scholar 

  84. C. Tsallis Introduction to Nonextensive Statistical Mechanics. Approaching a Complex World (Springer, Berlin, 2009)

  85. W. van Assche, R.J. Yáñez, R. Gonzalez-Férez, J.S. Dehesa, J. Math. Phys. 41(9), 6600 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  86. J.S. Dehesa, D. Puertas-Centeno, J. Phys. B.: At. Mol. Opt. Phys. 54, 065006 (2021)

  87. I. Bialynicki-Birula, Phys. Rev. A 74, 052101 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  88. S. Zozor, M. Portesi, C. Vignat, Physica A 387, 4800 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  89. P. Jizba, J.A. Dunningham, J. Joo, Ann. Phys. 355, 87 (2015)

    Article  ADS  Google Scholar 

  90. I.V. Toranzo, J.S. Dehesa, EPL 113, 48003 (2016)

    Article  ADS  Google Scholar 

  91. I.V. Toranzo, D. Puertas-Centeno, J.S. Dehesa, Physica A 462, 1197 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  92. D. Puertas-Centeno, I.V. Toranzo, J.S. Dehesa, J. Stat. Mech. 2018, 073203 (2018)

    Article  Google Scholar 

  93. I.V. Toranzo, D. Puertas-Centeno, N. Sobrino, J.S. Dehesa, Int. J. Quantum Chem. 120, e26077 (2020)

    Article  Google Scholar 

  94. A.I. Aptekarev, J.S. Dehesa, R.J. Yáñez, J. Math. Phys. 35(9), 4423 (1994)

    Article  ADS  Google Scholar 

  95. A.I. Aptekarev, V.S. Buyarov, J.S. Dehesa, Russ. Acad. Sci. Sbornik Math. 82(2), 373 (1995) (See Theorem 2)

  96. J.S. Dehesa, A. Martínez-Finkelshtein, J. Sánchez-Ruiz, J. Comput. Appl. Math. 133, 23 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  97. O. Onicescu, C.R. Acad, Sci. Paris A 263, 25 (1966)

    Google Scholar 

  98. A.M. Kaufman, M.E. Tai, A. Lukin, M. Rispoli, R. Schittko, P.M. Preiss, M. Greiner, Science 353, 794 (2016)

    Article  ADS  Google Scholar 

  99. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions (Cambridge University Press, New York, 2010)

    MATH  Google Scholar 

  100. V. Fock, Z. Physik 98, 145 (1935)

    Article  ADS  Google Scholar 

  101. B.H. Bransden, C.J. Joachain, T.J. Plivier, Physics of Atoms and Molecules (Longman, New York, 1983)

    Google Scholar 

  102. J.S. Dehesa, J.J. Moreno-Balcázar, I.V. Toranzo, J. Math. Phys. 59, 123504 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  103. V. Buyarov, J.S. Dehesa, A. Martinez-Finkelshtein, J. Sánchez-Lara, SIAM J. Sci. Comput 26(2), 488 (2004)

    Article  MathSciNet  Google Scholar 

  104. J.S. Dehesa, S. López-Rosa, R.J. Yáñez, J. Math. Phys. 48, 043503 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  105. J.S. Dehesa, A. Guerrero, P. Sánchez-Moreno, J. Math. Chem. 53, 573 (2015)

    Article  MathSciNet  Google Scholar 

  106. J.S. Dehesa, S. López-Rosa, D. Manzano, Eur. Phys. J. D 55, 539 (2009)

    Article  ADS  Google Scholar 

  107. A. Signoles, E.K. Dietsche, A. Facon, D. Grosso, S. Haroche, J.M. Raimond, M. Brune, S. Gleyzes, Phys. Rev. Lett. 118, 253603 (2017)

    Article  ADS  Google Scholar 

  108. R.G. Hulet, D. Kleppner, Phys. Rev. Lett. 51, 1430 (1983)

    Article  ADS  Google Scholar 

  109. T.L. Nguyen, J.M. Raimond, C. Sayrin, R. Cortinas, T. Cantat-Moltrecht, F. Assemat, I. Dotsenko, S. Gleyzes, S. Haroche, G. Roux, Th Jolicoeur, M. Brune, Phys. Rev. X 8, 011032 (2018)

    Google Scholar 

  110. T. Armon, L. Friedland, Quantum versus classical chirps in a Rydberg atom. arXiv:2008.09182v2 [quant-ph] 27 October 2020

  111. S. Parker, S. Bose, M.B. Plenio, Phys. Rev. A 61, 032305 (2000)

    Article  ADS  Google Scholar 

  112. A. Serafini, Quantum Continuous Variables: A Primer of Theoretical Methods (CRC Press, Boca Raton, 2017)

    Book  MATH  Google Scholar 

  113. D. Hundermarkt, in Proceed. Amer. Math. Soc.,vol.76.1, ed. by F. Gesztesy, P. Deift, C. Galvez, P. Perry and W Schlag (Providence, RI, USA, 2007), pp. 463 et sequel

  114. B. Gram-Hansen, A. Ossipov, 2015 An Investigation into the Creation of Entanglement Mediated by Interaction (University of Nottingham, Nottingham, 2015)

    Google Scholar 

  115. A.I. Aptekarev, E.D. Belega, J.S. Dehesa, J. Phys. A: Math. Gen. 54, 035305 (2020)

    Article  ADS  Google Scholar 

  116. J. Lim, H.G. Lee, J. Ahn, J. Korean Phys. Soc. 63(4), 867 (2013)

    Article  ADS  Google Scholar 

  117. N. Piccione, B. Militello, A. Napoli and B. Bellomo, Generation of minimum energy entangled states, Arxiv:2010.13644v1 [quantum-ph] 26 October 2020

  118. R.G. Nazmitdinov, N.S. Simonovic, A.R. Plastino, A.V. Chizhov, J. Phys. B: At. Mol. Opt. Phys. 45, 205503 (2012)

    Article  ADS  Google Scholar 

  119. J. Kysela, M. Erharda, A. Hochrainer, M. Krenn, A. Zeilinger, PNAS 117(42), 26118 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Agencia Estatal de Investigación (Spain) and the European Regional Development Fund (FEDER) under the Grant FIS2017-89349P, Ministerio de Economía, Industria y Competitividad, Gobierno de España under the fund FIS2017-89349P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Dehesa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehesa, J.S. Momentum disequilibrium and quantum entanglement of Rydberg multidimensional states. Eur. Phys. J. Plus 136, 454 (2021). https://doi.org/10.1140/epjp/s13360-021-01453-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01453-5

Navigation