Skip to main content
Log in

Cross sections for the \(\left( {n, p} \right)\) reaction of selenium isotopes within 10.5 to 19.81 MeV neutron energies

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The cross sections of the selenium isotopes 76Se, 77Se, 78Se and 80Se within 10.5–19.81 MeV neutron energy range have been measured through neutron activation method along with off-line γ-ray spectrometry. The quasi-monoenergetic neutrons were produced from the 7Li\(\left( {p, n} \right)\) reaction at 14UD BARC-TIFR Pelletron Accelerator Facility, Mumbai, India. The statistical codes TALYS-1.9 and EMPIRE-3.2.2 were applied for the theoretical calculation of reaction cross sections with different level density models from 2 to 22 MeV neutron energies. Besides this, the Se\(\left( {n, p} \right)\) As reaction cross sections were also calculated from different systematic formulae within 14–15 MeV neutron energies. The measured data were compared with existing literature data available in the EXFOR database, evaluated data of ENDF/B-VIII.0, JENDL-4.0 and TENDL-2019 libraries and with theoretical outcomes through TALYS-1.9 and EMPIRE-3.2.2 codes. The uncertainties in existing cross sections were calculated through the method of covariance analysis by including partial uncertainties and correlation among the different attributes. The \(\left( {n, p} \right)\) reaction cross sections of selenium isotopes at higher neutron energies first time measured in the present work can be added as new data in the nuclear data library.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository [Authors’ comment: The associated data in manuscript are taken from the EXFOR and ENDF data library. https://doi.org/10.1016/j.nds.2018.02.001; https://doi.org/10.1016/j.nds.2019.01.002; https://doi.org/10.1080/18811248.2011.9711675; https://doi.org/10.1016/j.nds.2014.07.065.]

References

  1. L.A. Bernstein et al., Annu. Rev. Nucl. Part. Sci. 69, 109 (2019)

    Article  ADS  Google Scholar 

  2. Experimental Nuclear Reaction Data IAEA-EXFOR Database, https://www-nds.iaea.org/exfor

  3. C. Rubbia, J. A. Rubio, S. Buono, et al., “Conceptual Design of a Fast Neutron Operated High Power Energy Amplifier” CERN Report No. CERN/AT/95–44 (ET), (1995).

  4. M. Todosow, A. Aronson, L. Cheng, et al., https://www.bnl.gov/isd/documents/79014.pdf

  5. Avetisyan, R., Hakobyan, M., Ivanyan, V., et al., Nuclear Theory, 33 (2014).

  6. F.M.D. Attar, S.D. Dhole, V.N. Bhoraskar et al., Phys. Rev. C 90, 064609 (2014)

    Article  ADS  Google Scholar 

  7. B. Lalemruata, N. Otuka, G.J. Tambave et al., Phys. Rev. C 85, 024624 (2012)

    Article  ADS  Google Scholar 

  8. K. Shibata, O. Iwamot, T. Nakagawa, N. Iwamot, A. Ichihara, S. Kunieda, S. Chiba et al., JENDL-4.0, A New Library for Nuclear Science and Engineering. J. Nucl. Sci. Techol. 48, 1 (2011)

    Article  Google Scholar 

  9. D.A. Brown, M. Herman, A. Trkov et al., EDNF/B-VIII.0. Nucl. Data Sheets 148, 1–142 (2018)

    Article  ADS  Google Scholar 

  10. A.J. Koning, D. Rochman, M. Fleming et al., TENDL-2019. Nucl. Data Sheets 155, 1–55 (2019)

    Article  ADS  Google Scholar 

  11. J.F. Ziegler, Nucl. Instru. Methods B 219–220, 1027 (2004)

    Article  ADS  Google Scholar 

  12. B. Singh, N. Nica, Nucl. Data Sheets 113, 1115 (2012)

    Article  ADS  Google Scholar 

  13. R.B. Firestone, Nucl. Data Sheets 108, 2319 (2007)

    Article  ADS  Google Scholar 

  14. C.H. Poppe, J.D. Anderson, J.C. Davis et al., Phys. Rev. C 14, 438 (1976)

    Article  ADS  Google Scholar 

  15. J.D. Anderson, C. Wong, V.A. Madsen et al., Phys. Rev. Lett. 24, 1074 (1970)

    Article  ADS  Google Scholar 

  16. D. L. Smith et al., “Corrections for Low Energy Neutrons by Spectral Indexing” retrieved from https://www.oecdnea. org/science/docs/2005/nsc-wpec-doc2005–357.pdf

  17. P.M. Prajapati, H. Naik, S.V. Suryanarayana et al., Eur. Phys. J. A 48, 1 (2012)

    Article  Google Scholar 

  18. E. M. Zsolnay, R. Capote, et al., Technical Report No. INDC(NDS)-0616, IAEA, Vienna (2012).

  19. Nowotny R., XMuDat: photon attenuation data on PC. IAEA Report IAEA-NDS 195 (1998). http://www-nds.iaea.org/publi catio ns/iaea-nds

  20. D.W. Millsap, S. Landsberger et al., Appl. Radiat. Iso. 97, 21–433 (2015)

    Article  Google Scholar 

  21. T. Vidmar, EFFTRAN—A Monte Carlo efficiency transfer code for gamma-ray spectrometry. Nuclear Instruments and Methods in Physics Research A 550, 603–608 (2005)

    Article  ADS  Google Scholar 

  22. L. P. Geraldo and D. L. Smith, Nucl. Instrum. and Methods in Phys. Res. A 290:499–508 (1990).

  23. I. Pasha, B. Rudraswamy, E. Radha, V. Sathiamoorthy, Efficiency of high-purity germanium detector at characteristic gamma energies of 198Au and 58Co and covariance analysis. Radiat Prot Environ 41, 110–114 (2018)

    Article  Google Scholar 

  24. N. Otuka, B. Lalremruata, L. R. M. Punte et al., Radiation Physics and Chemistry (2017).

  25. A. J. Koning, S. Hilaire, and M. Duijvestijn, TALYS-1.9, A Nuclear Reaction Program, NRG-1755ZGPetten, The Netherlands, CEA, Service de Physiue et Techniques Nucleariques, B.P. 12, F-91680 Bruyeres-le-Chatel, France (2004).

  26. M. Herman, EMPIRE-3.2 Statistical Model Code for Nuclear Reaction Calculations (ver. 3.2.2) (IAEA, Vienna, Austria, 2002).

  27. W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)

    Article  ADS  Google Scholar 

  28. H.M. Hofmann, J. Richert, J.W. Tepel and H.A. Weidenmuller, Ann. Phys. (N.Y.) 90, 403 (1975).

  29. A.J. Koning, J.P. Declaroche, Nucl. Phys. A 713, 231 (2003)

    Article  ADS  Google Scholar 

  30. C. Kalbach, Phys. Rev. C 33, 818 (1986)

    Article  ADS  Google Scholar 

  31. A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965)

    Article  ADS  Google Scholar 

  32. W. Dilg, W. Schantl, H. Vonach, M. Uhl, Nucl. Phys. A 217, 269 (1973)

    Article  ADS  Google Scholar 

  33. A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, Sov. J. Nucl. Phys. 29, 450 (1979)

    Google Scholar 

  34. A.V. Ignatyuk, J.L. Weil, S. Raman, S. Kahane, Phys. Rev. C 47, 1504 (1993)

    Article  ADS  Google Scholar 

  35. S. Goriely, S. Hilaire, A.J. Koning, Phys. Rev. C 78, 064307 (2008)

    Article  ADS  Google Scholar 

  36. S. Hilaire, M. Girod, S. Goriely and A.J. Koning, “Temperature dependent combinatorial level densities with the D1M Gogny force”, to be published (2013).

  37. A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Sov. J. Nucl. Phys. 21, 255 (1975)

    Google Scholar 

  38. P. Demetriou, S. Goriely, Nucl. Phys. A 695, 95 (2001)

    Article  ADS  Google Scholar 

  39. F.D. Bechetti Jr., G.W. Greenless, Phys. Rev. 182, 1190 (1969)

    Article  ADS  Google Scholar 

  40. R. Capote, M. Herman, P. Oblozinsky et al., RIPL–Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations. Nucl. Data Sheets 110, 3107–3214 (2009)

    Article  ADS  Google Scholar 

  41. Yiğit, M., & Kara, A. et al., Nuclear Engineering and Technology, 49 (5), 996–1005.

  42. V.N. Levkovski, Zh. Eksp, Teor. Fiz. 45, 305 (1963)

    Google Scholar 

  43. S. Ait-Tahar, J. Phys. G: Nucl. Phys. 13, L121 (1987)

    Article  ADS  Google Scholar 

  44. Y. Kasugai, Y. Ikeda, H. Yamamito, et al., In Proceedings of the 1994 Symposium on Nuclear Data, November 1994, Tokai, Japan.

  45. R. Doczi, V. Semkova, A. D. Majdeddin, et al., IAEA-NDS Report No. Indc (HUN)-032, (1997).

  46. R. A. Forrest, Report AERE-R-12149. Atomic Energy Research Establishment, Harwell.

  47. V. M. Bychkov, V. N. Manokhin, A. B. Pashchenko, et al., IAEA-NDS Report No. Indc (CCP) 146, (1980).

  48. J. Luo et al., Nucl. Instrum. Method Phys. Res. B 266, 4862 (2008)

    Article  ADS  Google Scholar 

  49. F. I. Habbani and Khalda T. Osman, Appl. Radiat. Isot. 54, 283 (2001).

  50. Birn, I., & Qaim, S. M. Excitation Functions of Neutron Threshold Reactions on Some Isotopes of Germanium, Arsenic, and Selenium in the 6.3 to 14.7-MeV Energy Range. 5639 (October) (2017).

  51. H.M. Hoang, U. Garuska, A. Marcinkowski, Z. Phys, Atomic Nuclei 334, 285–291 (1989)

    Article  Google Scholar 

  52. A. A. Filatenkov et al., Khlopin Radiev. Inst. Report No. 258, (1999).

  53. Guozhu He, Zhongjie, et al., Indian Journal of Pure and Applied Physics, Vol. 43, p.729 (2005).

  54. B. Minetti and A. Pasquarelli, Nuclear Physics A.100 (1967).

  55. P. Venugopala Rao And R. W. Fink, Physical Review, Vol. 154, No. 4 (1967).

  56. N.I. Molla, S.M. Qaim, Nucl. Phys. A 283, 269–288 (1977)

    Article  ADS  Google Scholar 

  57. A. Grallert, J. Csikai, et al., IAEA Nucl. Data Section report to the I.N.D.C. No.286, p.131 (1993).

  58. V. V. Ivanenko and K. A. Petrzhak, Yadernaya Fizika Vol.9, Issue.2, p.258 (1969).

Download references

Acknowledgements

The authors are thankful to the staff of BARC-TIFR Pelletron accelerator facility for their support and help during the neutron irradiation experiment. The authors are also grateful to the BARC-TIFR target lab to prepare Li and Ta targets for the experiment. One of the authors (RKS) is thankful for financial assistance from the IUAC (UGC) New Delhi for fellowship through a research project (IUAC/XIII.7/UFR-60321).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. K. Singh or N. L. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.K., Singh, N.L., Chauhan, R.D. et al. Cross sections for the \(\left( {n, p} \right)\) reaction of selenium isotopes within 10.5 to 19.81 MeV neutron energies. Eur. Phys. J. Plus 136, 338 (2021). https://doi.org/10.1140/epjp/s13360-021-01299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01299-x

Navigation