Skip to main content

Advertisement

Log in

Nuclear level density and thermal properties of \(^{115}\hbox {Sn}\) from neutron evaporation

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The nuclear level density of \(^{115}\hbox {Sn}\) has been measured in an excitation energy range of \(\sim 2\)–9 MeV using the experimental neutron evaporation spectra from the \(^{115}\hbox {In}\)(pn)\(^{115}\hbox {Sn}\) reaction. The experimental level densities were compared with the microscopic Hartree–Fock BCS (HFBCS), Hartree–Fock–Bogoliubov plus combinatorial (HFB + C), and an exact pairing plus independent particle model (EP + IPM) calculations. It is observed that the EP + IPM provides the best description of the experimental data among the three. The thermal properties (entropy and temperature) of \(^{115}\hbox {Sn}\) have been investigated from the measured level densities. The experimental temperature profile as well as the calculated heat capacity show distinct signatures of a transition from the strongly-paired nucleonic phase to the weakly paired one in this nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

References

  1. W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)

    Article  ADS  Google Scholar 

  2. A.C. Larsen, A. Spyrou, S.N. Liddick, M. Guttormsen, Prog. Part. Nucl. Phys. 107, 69 (2019)

  3. M. Arnould, K. Takahashi, Rep. Prog. Phys. 62, 395 (1999)

    Article  ADS  Google Scholar 

  4. C.D. Bowman, Annu. Rev. Nucl. Part. Sci. 48, 505 (1998)

    Article  ADS  Google Scholar 

  5. H.R. Mirzaei et al., J. Cancer Res. Ther. 12, 520 (2016)

    Article  Google Scholar 

  6. E. Melby, L. Bergholt, M. Guttormsen et al., Phys. Rev. Lett. 83, 3150 (1999)

    Article  ADS  Google Scholar 

  7. F. Giacoppo, F.L. Bello Garrote, L.A. Bernstein, Phys. Rev. C 90, 054330 (2014)

    Article  ADS  Google Scholar 

  8. E. Melby, M. Guttormsen, J. Rekstad, Phys. Rev. C 63, 044309 (2001)

    Article  ADS  Google Scholar 

  9. U. Agvaanluvsan, A.C. Larsen, M. Guttormsen et al., Phys. Rev. C 79, 014320 (2009)

    Article  ADS  Google Scholar 

  10. H.K. Toft, A.C. Larsen, U. Agvaanluvsan et al., Phys. Rev. C 81, 064311 (2010)

    Article  ADS  Google Scholar 

  11. N.U.H. Syed, A.C. Larsen, A. Burger et al., Phys. Rev. C 80, 044309 (2009)

    Article  ADS  Google Scholar 

  12. M. Guttormsen, B. Jurado, J.N. Wilson et al., Phys. Rev. C 88, 024307 (2013)

    Article  ADS  Google Scholar 

  13. Balaram Dey, Q. Hung, D. Pandit et al., Phys. Lett. B 789, 634 (2019)

  14. A. Schiller, A. Bjerve, M. Guttormsen et al., Phys. Rev. C 63, 021306 (2001)

    Article  ADS  Google Scholar 

  15. K. Kaneko, M. Hasegawa, U. Agvaanluvsan, Phys. Rev. C 74, 024325 (2006)

    Article  ADS  Google Scholar 

  16. R. Chankova, A. Schiller, U. Agvaanluvsan, Phys. Rev. C 73, 034311 (2006)

    Article  ADS  Google Scholar 

  17. J.L. Egido, L.M. Robledo, V. Martin, Phys. Rev. Lett. 85, 26 (2000)

    Article  ADS  Google Scholar 

  18. S. Liu, Y. Alhassid, Phys. Rev. Lett. 87, 022501 (2001)

    Article  ADS  Google Scholar 

  19. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  20. N.Q. Hung, N.D. Dang, L.G. Moretto, Rep. Prog. Phys. 82, 056301 (2019)

    Article  ADS  Google Scholar 

  21. W. Rapp, J. Gorres, M. Wiescher et al., Astrophys. J. 653, 474 (2006)

    Article  ADS  Google Scholar 

  22. D. Pandit, S. Mukhopadhyay, S. Bhattacharya et al., Nucl. Instrum. Methods Phys. Res. A 624, 148 (2010)

    Article  ADS  Google Scholar 

  23. P. Roy, K. Banerjee, A.K. Saha et al., Nucl. Inst. Methods Phys. Res. A 901, 198 (2018)

  24. P. Roy, K. Banerjee, T.K. Rana et al., Phys. Rev. C 102, 061601(R) (2020)

    ADS  Google Scholar 

  25. A.J. Koning, S. Hilaire, M.C. Duijvestijn, TALYS-1.9, online at https://www.talys.eu

  26. A.J. Koning, M.C. Duijvestijn, Nucl. Phys. A 744, 15 (2004)

    Article  ADS  Google Scholar 

  27. E. Gadioli, P.E. Hodgson, Pre-equilibrium Nuclear Reactions (Oxford University Press, Oxford, 1992)

    Google Scholar 

  28. A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965)

    Article  ADS  Google Scholar 

  29. H.A. Bethe, Phys. Rev. 50, 332 (1936)

    Article  ADS  Google Scholar 

  30. H.A. Bethe, Rev. Mod. Phys. 9, 69 (1937)

  31. A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Sov. J. Nucl. Phys. 21, 255 (1975)

    Google Scholar 

  32. H. Vonach, Proceedings of the IAEA advisory group meeting on basic and applied problems of nuclear level densities, Upton, New York, 1983, Brookhaven National Laboratory Report No. BNL-NCS-51694, p. 247, (1983)

  33. A. Wallner, B. Strohmaier, H. Vonach, Phys. Rev. C 51, 614 (1995)

    Article  ADS  Google Scholar 

  34. A.V. Voinov, S.M. Grimes, C.R. Brune et al., Phys. Rev. C 76, 044602 (2007)

    Article  ADS  Google Scholar 

  35. A.P.D. Ramirez, A.V. Voinov, S.M. Grimes et al., Phys. Rev. C 88, 064324 (2013)

    Article  ADS  Google Scholar 

  36. T. Von Egidy, D. Bucurescu, Phys. Rev. C 80, 054310 (2009)

    Article  ADS  Google Scholar 

  37. R. Capote, M. Herman, P. Oblozinsky et al., Nucl. Data Sheets 110, 3107 (2009)

    Article  ADS  Google Scholar 

  38. S. Goriely, F. Tondeur, J.M. Pearson, Atom. Data Nucl. Data Tables 77, 311 (2001)

    Article  ADS  Google Scholar 

  39. P. Demetriou, S. Goriely, Nucl. Phys. A 695, 95 (2001)

    Article  ADS  Google Scholar 

  40. S. Goriely, S. Hilaire, A.J. Koning, Phys. Rev. C 78, 064307 (2008)

    Article  ADS  Google Scholar 

  41. N.Q. Hung, N.D. Dang, L.T.Q. Huong, Phys. Rev. Lett. 118, 022502 (2017)

    Article  ADS  Google Scholar 

  42. N.D. Dang, N.Q. Hung, L.T.Q. Huong, Phys. Rev. C 96, 054321 (2017)

    Article  ADS  Google Scholar 

  43. N.Q. Hung, N.D. Dang, L.T.Q. Huong, Phys. Rev. C 94, 024341 (2016)

    Article  ADS  Google Scholar 

  44. E. Algin, U. Agvaanluvsan, M. Guttormsen et al., Phys. Rev. C 78, 054321 (2008)

    Article  ADS  Google Scholar 

  45. N.Q. Hung, N.D. Dang, Phys. Rev. C 81, 057302 (2010)

    Article  ADS  Google Scholar 

  46. N.Q. Hung, N.D. Dang, Phys. Rev. C 82, 044316 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the VECC Cyclotron operators for smooth running of the accelerator during the experiment. We are thankful to J. K. Meena, A. K. Saha, J. K. Sahoo and R. M. Saha for their help during the experimental setup. The authors also thanks Jhilam Sadhukhan for the stimulating discussions.

NQH’s works are funded by The National Foundation for Science and Technology Development of Vietnam through Grant Number 103.04-2019.371.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratap Roy.

Additional information

Communicated by Navin Alahari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, P., Banerjee, K., Rana, T.K. et al. Nuclear level density and thermal properties of \(^{115}\hbox {Sn}\) from neutron evaporation. Eur. Phys. J. A 57, 48 (2021). https://doi.org/10.1140/epja/s10050-021-00373-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00373-3

Navigation